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What happens here!

® We discuss the application of a general
theory for the description of mobile

systems into the area of BPM and its wider
parts
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What are mobile
systems?

® Mobile systems are made of entities that
move In a certain space
® Different kinds of mobility:

|. Links that move in an abstract space of
linked processes

2. Processes that move in an abstract space
of linked processes
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Dynamic Topologies

® Mobile systems describe behavior with
dynamic topologies, i.e. changing structures

® This is contrary to static structures for the
description of behavior, i.e. Petri nets:
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Link Passing Mobility
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Qutline Pi-Calculus Part

® Motivation

® The Theory of the Pi-Calculus

® Workflow and Data Patterns

® Application of the Pi-Calculus to BPM

® Verification
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Motivation

The Shifting Focus



A Shift in Theoretical
Foundations

® From: Sequential systems

® | ambda-Calculus (Church, Kleene, =1930)
® Over: Parallel systems

® Petri nets (Petri, =1960)

® To: Mobile systems

® Pi-Calculus (Milner, Parrow, Walker =1990)

(C) 2007 Frank Puhlmann



The Lambda-Calculus

® Defined to investigate the definition of
functions which are used for sequential
computing

® Precise definition of a computable function
® Recursion
® Algebra: Compositional Structure

® Smallest universal programming language
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Sequential System
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Petri nets

® Business processes require parallelism
® Split, Joins
® Dependencies

® Petri nets build a foundation for BPM
® Explicit states and structure

® Strong visualization

(C) 2007 Frank Puhlmann



(C) 2007 Frank Puhlmann

Parallel System
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Petri net drawbacks

® (Good and Bad: Static structure

® No advanced composition

® Regarding behavioral workflow patterns:

® Excellent support for basic tasks

® Poor support for advanced tasks
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The Pi-Calculus

® Describes mobile systems
® Agents (processes) interacting by
® Names with agile scopes

® |s an algebra
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Evolution

Mobile System




The Pi-Calculus
Advantage

® QOvercomes the limitations of static
structures

® Has the pros and cons of an algebra

® Supports all behavioral workflow patterns
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Why mobile systems!?

® What'’s wrong with BPM and Petri nets?

® Why do we need mobile instead of parallel
systems!

® Strong discussion between academics and
practitioners
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Why mobile systems!?

® We argue: Three major shifts in BPM will
lead to mobile systems as a theoretical
foundation
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BPM Shift |:
From Static to Dynamic Systems

® Traditional: Static, state-based systems

® c.g.Workflow nets,Activity Diagrams,
BPMN (Token-Place concept)

® Joday: Inter-organizational business
processes

® “Hard to change”
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Process Answer

Start Send
Request

Timeout

Sample Process
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Corresponding Process
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Dynamic Systems

® No explicit state description
® Fach task is mapped to a service:

® Fach task has pre- and postconditions
(i.e.in- and outgoing messages)

® All tasks are “swimming” inside a service-
oriented environment
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Service-oriented Architecture
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Reason |:

® Mobile systems are based on the idea of
interaction by messages/events instead of
state transitions

® Support for dynamic binding

(C) 2007 Frank Puhlmann
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BPM Shift |l: From Central
Engines to Distributed Services

® Follows direct from the last shift:

® No more centralized engine as for intra-
organizational “workflow”

® |nstead distributed services of different
granularity
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Distributed Services
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Reason ll:

® Mobile systems support advanced
composition and visibility of their parts

® Support distribution and the service-
oriented idea for BPM

(C) 2007 Frank Puhlmann
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BPM Shift lll: From Closed
to Open Environments

® The environment where processes are executed
is shifting strongly from closed to open, which
means:

® | ess accessibility
® More uncertainty
® Constant change regardless of us

® Number of possible interaction partners rises
fast
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Issues regarding Open
Environments

® Constant change requires dynamic adaption
® Flexible discovery and integration

® More agile interaction
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Reasons lll:

® Mobile systems describe dynamic process
structures

® Based on a prototypical viewpoint

® Support “flexibility” regarding discovery
and interaction for BPM
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Motivation in a Nutshell

® Mobile systems support advanced key
concepts of BPM:

® Dynamic Binding
® Composition and Visibility
® Change

® The Pi-Calculus is a process algebra for
mobile systems

(C) 2007 Frank Puhlmann
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The Theory of the Pi-
Calculus

Syntax & Semantics



Informal Introduction

® The Pi-Calculus is based on few concepts:
® Agents (Processes)
® Names

® Synchronized Interactions
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(C) 2007 Frank Puhlmann

% talk

TIM

TiM talk (message).0
ToM < talk(message). Tron .0

SYSTEM < TIivm | TOM

Basic Interaction
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talk‘ Q talk

print

TIM “ Falk (print).0

ToM < talk(pm’nt) print(file).0
PR[NTER 'p’rznt(ﬁle) TprINT.-0

SYSTEM 2 TIM | TOM | PRINTER

Evolutlon

Advanced Interaction
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Tiv talkron (message).0 + talk i, (message).0

TIM x = T|talkron (message).0+

x = L|talkri, (message).0
Choice
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TIM talkron (message).0 | talkrir, (message).0

Concurrency
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GENERATOR

GENERATOR < (va)get(x).0

Name Creation
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The Pi-Calculus BNF

P:=M|P|P|vzP|!'P
M:=0|n.P|M+M

mou= T) | 2(2) [ 7] [z =yl
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Abbreviations

3
Composition: | [(P) = P|P|P
1
3
Summation: Z(P) =P+ P+P
1

3
with index: » (d;.0) = d1.0 + d5.0 + d30
1=1

Sequence:{r}} = 7.1
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Bound and free names

® |n each of
z(z).P and vz P

the displayed occurrence of z is binding with scope
P

® An occurrence of a name in an agent is bound if it
is, or it lies within the scope of, a binding
occurrence of the name

® An occurrence of a name in an agent is free if it is
not bound
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Substitution

® Ve write
P{yl/xlv”' ’yn /xn}

® for the simultaneous substitution of y; for
all free occurrences of x; in P, with the
change of bound names if necessary to
prevent any of the new names y; from
becoming bound in P

(C) 2007 Frank Puhlmann
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Defined Agent
ldentifiers

® A defined agent identifier is given by:

Alzy, - 2,) ™ P

® Then
A(y1, -+ ,yn) behaves as P{Y* /. ,--- 9" /. }

® if xi are free names in P

® the definition can be thought of as an agent
declaration with xi, ..., xn as formal parameters, and
the identifier A(yi, ..., Yn) as an invocation with
actual parameters yi,..., ¥n

(C) 2007 Frank Puhlmann
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(—5 (W (5
X | Evolution > X

A| B=0bx).A" | b(y).B’

b(z). A" | b(y).B" | C — A" B{"/,} | C

Example: Communication
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---.._ scope of x ,-----._ scope of x

—

A" C | (va)(B'{" [ H" /23 | DI /)

Example: Scope Intrusion
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scope of x oo oo -
N .. scope of x

(vz)(A" | C'| B{"/-})

Example: Scope Extrusion
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M (x) o write(x).M (x) + read{x).M (x)

(vwrite, read)(M(z) | A)

Example: Recursion
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The Polyadic Pi-
Calculus

® How can we send messages consisting of
multiple names!?
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The Polyadic
Pi-Calculus

® Syntactical enhancement:
® T(Y1,...,Yn).P+— (vw)(@(w).w(y)..... wW{(Yn).P)
o r(21,...,2,).P+— x(w)w(z)..... w(zy). P

® Sequences:

~

® IUi,...,Typ— 1T

® Empty messages:

oy —xif y=0,22) — xiff =10
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Reduction

® Evolution is formally defined as reduction
® The essence of reduction is captured in two axioms:
o (T(y).Pr+ M) | (x(2).P2 + M) — P | P2{?/:}
o 7.P+ M — P
® and three rules:
e from P, — P; infer P;|P, — Pj|P,
e from P — P’ infer vz P — vz P’

ofromP%P’andPEQandP’EQliﬂfel’Q%Q,

(C) 2007 Frank Puhlmann
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Structural Congruence

® The axioms of structural congruence (Part 1):

SC-MAT: LL’ — x]ﬂ'.P = 7.P
SC-SUM-ASSOC: My + (Mo + M3) = (M7 + Ms) + Ms
SC-SUM-COMM: M1 T M2 — M2 -+ M1

SC-SUM-INACT: M +0 = M
SC-COMP-ASSOC: P, |(P:|P3) = (P1i|FP2)|Ps
SC-COMP-COMM: P, |P, = P,|P,

SC-COMP-INACT: P|0 = P

(C) 2007 Frank Puhlmann
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Structural Congruence

® The axioms of structural congruence (Part 2):

® SC-RES:

® SC-RES-INACT:
® SC-RES-COMP:
e SC-REP

e UNFOLDING:
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vzvw P =vwrz P

vz 0=0

vz (P1|Py) = Pilvz Ps, if 2 & fn(Py)
P = P|P

A(g) = P{7/:} if A(z) < P
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Example: Reduction
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