Business Process
Management

Theory: The Pi-Calculus

Frank Puhlmann
Business Process Technology Group
Hasso Platther Institut
Plattner

Potsdam, Germany ﬂ
Institut

| IT Systems Engineering | Universitat Potsdam

Hasso

What happens here!

® We discuss the application of a general
theory for the description of mobile

systems into the area of BPM and its wider
parts

(C) 2007 Frank Puhlmann

What are mobile
systems?

® Mobile systems are made of entities that
move In a certain space
® Different kinds of mobility:

|. Links that move in an abstract space of
linked processes

2. Processes that move in an abstract space
of linked processes

(C) 2007 Frank Puhlmann

Dynamic Topologies

® Mobile systems describe behavior with
dynamic topologies, i.e. changing structures

® This is contrary to static structures for the
description of behavior, i.e. Petri nets:

—O—L_

O
"TogoT T

(C) 2007 Frank Puhlmann

Link Passing Mobility

(C) 2007 Frank Puhlmann

Qutline Pi-Calculus Part

® Motivation

® The Theory of the Pi-Calculus

® Workflow and Data Patterns

® Application of the Pi-Calculus to BPM

® Verification

(C) 2007 Frank Puhlmann

Motivation

The Shifting Focus

A Shift in Theoretical
Foundations

® From: Sequential systems

® | ambda-Calculus (Church, Kleene, =1930)
® Over: Parallel systems

® Petri nets (Petri, =1960)

® To: Mobile systems

® Pi-Calculus (Milner, Parrow, Walker =1990)

(C) 2007 Frank Puhlmann

The Lambda-Calculus

® Defined to investigate the definition of
functions which are used for sequential
computing

® Precise definition of a computable function
® Recursion
® Algebra: Compositional Structure

® Smallest universal programming language

(C) 2007 Frank Puhlmann

M

Sequential System

(C) 2007 Frank Puhlmann

Petri nets

® Business processes require parallelism
® Split, Joins
® Dependencies

® Petri nets build a foundation for BPM
® Explicit states and structure

® Strong visualization

(C) 2007 Frank Puhlmann

(C) 2007 Frank Puhlmann

Parallel System

HO_;EHO

Petri net drawbacks

® (Good and Bad: Static structure

® No advanced composition

® Regarding behavioral workflow patterns:

® Excellent support for basic tasks

® Poor support for advanced tasks

(C) 2007 Frank Puhlmann

The Pi-Calculus

® Describes mobile systems
® Agents (processes) interacting by
® Names with agile scopes

® |s an algebra

(C) 2007 Frank Puhlmann

(C) 2007 Frank Puhlmann

Evolution

Mobile System

The Pi-Calculus
Advantage

® QOvercomes the limitations of static
structures

® Has the pros and cons of an algebra

® Supports all behavioral workflow patterns

(C) 2007 Frank Puhlmann

Why mobile systems!?

® What'’s wrong with BPM and Petri nets?

® Why do we need mobile instead of parallel
systems!

® Strong discussion between academics and
practitioners

(C) 2007 Frank Puhlmann |7

Why mobile systems!?

® We argue: Three major shifts in BPM will
lead to mobile systems as a theoretical
foundation

(C) 2007 Frank Puhlmann

BPM Shift |:
From Static to Dynamic Systems

® Traditional: Static, state-based systems

® c.g.Workflow nets,Activity Diagrams,
BPMN (Token-Place concept)

® Joday: Inter-organizational business
processes

® “Hard to change”

(C) 2007 Frank Puhlmann

Receive and
Process Answer

Start Send
Request

Timeout

Sample Process

(C) 2007 Frank Puhlmann

20

Corresponding Process

(C) 2007 Frank Puhlmann

21

(C) 2007 Frank Puhlmann

C

Syl ol

Receive Send
Request Response
System
‘ Border
Requests .« ResSpoNSes M

Receive and
Process Answer

Start Send
Request

Timeout

Static Interaction

22

Dynamic Systems

® No explicit state description
® Fach task is mapped to a service:

® Fach task has pre- and postconditions
(i.e.in- and outgoing messages)

® All tasks are “swimming” inside a service-
oriented environment

(C) 2007 Frank Puhlmann

23

PN

Service
Repository
Mublish
Service Bind .| Service
Requester Provider

~_ ~_

Service-oriented Architecture

(C) 2007 Frank Puhlmann

Reason |:

® Mobile systems are based on the idea of
interaction by messages/events instead of
state transitions

® Support for dynamic binding

(C) 2007 Frank Puhlmann

25

BPM Shift |l: From Central
Engines to Distributed Services

® Follows direct from the last shift:

® No more centralized engine as for intra-
organizational “workflow”

® |nstead distributed services of different
granularity

(C) 2007 Frank Puhlmann 26

Distributed Services

(C) 2007 Frank Puhlmann

Other space

@ Our space
Send
Response @
Receive and
0 Process Answer
Receive \

Send
Request

Request
Timeout

27

Reason ll:

® Mobile systems support advanced
composition and visibility of their parts

® Support distribution and the service-
oriented idea for BPM

(C) 2007 Frank Puhlmann

28

BPM Shift lll: From Closed
to Open Environments

® The environment where processes are executed
is shifting strongly from closed to open, which
means:

® | ess accessibility
® More uncertainty
® Constant change regardless of us

® Number of possible interaction partners rises
fast

(C) 2007 Frank Puhlmann 29

Issues regarding Open
Environments

® Constant change requires dynamic adaption
® Flexible discovery and integration

® More agile interaction

(C) 2007 Frank Puhlmann

30

Reasons lll:

® Mobile systems describe dynamic process
structures

® Based on a prototypical viewpoint

® Support “flexibility” regarding discovery
and interaction for BPM

(C) 2007 Frank Puhlmann

31

Motivation in a Nutshell

® Mobile systems support advanced key
concepts of BPM:

® Dynamic Binding
® Composition and Visibility
® Change

® The Pi-Calculus is a process algebra for
mobile systems

(C) 2007 Frank Puhlmann

32

The Theory of the Pi-
Calculus

Syntax & Semantics

Informal Introduction

® The Pi-Calculus is based on few concepts:
® Agents (Processes)
® Names

® Synchronized Interactions

(C) 2007 Frank Puhlmann

34

(C) 2007 Frank Puhlmann

% talk

TIM

TiM talk (message).0
ToM < talk(message). Tron .0

SYSTEM < TIivm | TOM

Basic Interaction

35

talk‘ Q talk

print

TIM “ Falk (print).0

ToM < talk(pm’nt) print(file).0
PR[NTER 'p’rznt(ﬁle) TprINT.-0

SYSTEM 2 TIM | TOM | PRINTER

Evolutlon

Advanced Interaction

(C) 2007 Frank Puhlmann

36

Tiv talkron (message).0 + talk i, (message).0

TIM x = T|talkron (message).0+

x = L|talkri, (message).0
Choice

(C) 2007 Frank Puhlmann

TIM talkron (message).0 | talkrir, (message).0

Concurrency

(C) 2007 Frank Puhlmann

38

(C) 2007 Frank Puhlmann

GENERATOR

GENERATOR < (va)get(x).0

Name Creation

39

The Pi-Calculus BNF

P:=M|P|P|vzP|!'P
M:=0|n.P|M+M

mou= T) | 2(2) [7] [z =yl

(C) 2007 Frank Puhlmann

40

Abbreviations

3
Composition: | [(P) = P|P|P
1
3
Summation: Z(P) =P+ P+P
1

3
with index: » (d;.0) = d1.0 + d5.0 + d30
1=1

Sequence:{r}} = 7.1

(C) 2007 Frank Puhlmann

4]

Bound and free names

® |n each of
z(z).P and vz P

the displayed occurrence of z is binding with scope
P

® An occurrence of a name in an agent is bound if it
is, or it lies within the scope of, a binding
occurrence of the name

® An occurrence of a name in an agent is free if it is
not bound

(C) 2007 Frank Puhlmann

42

Substitution

® Ve write
P{yl/xlv”' ’yn /xn}

® for the simultaneous substitution of y; for
all free occurrences of x; in P, with the
change of bound names if necessary to
prevent any of the new names y; from
becoming bound in P

(C) 2007 Frank Puhlmann

43

Defined Agent
ldentifiers

® A defined agent identifier is given by:

Alzy, - 2,) ™ P

® Then
A(y1, -+ ,yn) behaves as P{Y* /. ,--- 9" /. }

® if xi are free names in P

® the definition can be thought of as an agent
declaration with xi, ..., xn as formal parameters, and
the identifier A(yi, ..., Yn) as an invocation with
actual parameters yi,..., ¥n

(C) 2007 Frank Puhlmann

44

(—5 (W (5
X | Evolution > X

A| B=0bx).A" | b(y).B’

b(z). A" | b(y).B" | C — A" B{"/,} | C

Example: Communication

(C) 2007 Frank Puhlmann

45

---.._ scope of x ,-----._ scope of x

—

A" C | (va)(B'{" [H" /23 | DI /)

Example: Scope Intrusion

(C) 2007 Frank Puhlmann

46

scope of x oo oo -
N .. scope of x

(vz)(A" | C'| B{"/-})

Example: Scope Extrusion

(C) 2007 Frank Puhlmann

47

M (x) o write(x).M (x) + read{x).M (x)

(vwrite, read)(M(z) | A)

Example: Recursion

(C) 2007 Frank Puhlmann

48

The Polyadic Pi-
Calculus

® How can we send messages consisting of
multiple names!?

(C) 2007 Frank Puhlmann

49

The Polyadic
Pi-Calculus

® Syntactical enhancement:
® T(Y1,...,Yn).P+— (vw)(@(w).w(y)..... wW{(Yn).P)
o r(21,...,2,).P+— x(w)w(z)..... w(zy). P

® Sequences:

~

® IUi,...,Typ— 1T

® Empty messages:

oy —xif y=0,22) — xiff =10

(C) 2007 Frank Puhlmann 50

Reduction

® Evolution is formally defined as reduction
® The essence of reduction is captured in two axioms:
o (T(y).Pr+ M) | (x(2).P2 + M) — P | P2{?/:}
o 7.P+ M — P
® and three rules:
e from P, — P; infer P;|P, — Pj|P,
e from P — P’ infer vz P — vz P’

ofromP%P’andPEQandP’EQliﬂfel’Q%Q,

(C) 2007 Frank Puhlmann

51

Structural Congruence

® The axioms of structural congruence (Part 1):

SC-MAT: LL’ — x]ﬂ'.P = 7.P
SC-SUM-ASSOC: My + (Mo + M3) = (M7 + Ms) + Ms
SC-SUM-COMM: M1 T M2 — M2 -+ M1

SC-SUM-INACT: M +0 = M
SC-COMP-ASSOC: P, |(P:|P3) = (P1i|FP2)|Ps
SC-COMP-COMM: P, |P, = P,|P,

SC-COMP-INACT: P|0 = P

(C) 2007 Frank Puhlmann

52

Structural Congruence

® The axioms of structural congruence (Part 2):

® SC-RES:

® SC-RES-INACT:
® SC-RES-COMP:
e SC-REP

e UNFOLDING:

(C) 2007 Frank Puhlmann

vzvw P =vwrz P

vz 0=0

vz (P1|Py) = Pilvz Ps, if 2 & fn(Py)
P = P|P

A(g) = P{7/:} if A(z) < P

53

Example: Reduction

(C) 2007 Frank Puhlmann

54

