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A business process containing Discriminator, N-out-of-M, or Multiple 
Instances without Synchronization patterns (called the critical patterns), 
such as
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A, B, and C represent three web service 
interactions.

After two of them have completed, D is 
executed and thereafter the process is 
finished.

However, one of the activities is still active, and clean-up 
work like payment and documentation has to be done.

As the remaining activity contradicts the soundness definition, we can 
not use existing tools to verify the sample business process. Still, 
automated verification regarding deadlocks and livelocks is quite 
important even if you employ one of the critical patterns in your 
business process.

Lazy Soundness proves business processes 
containing the critical patterns (and all others) to 
be free of deadlocks and livelocks. Technically, it 
abstracts from all internals of the process and 
just considers the initial and final node. The 
abstracted process is verified using bisimulation 
techniques.

Demo Presentation:

Thursday, Sep 7 10:30am, Room EI10 

Lazy soundness has been implemented in a prototypical tool chain at 
our research group. We provide a graphical editing of business 
processes using BPMN, automatically formalize BPM diagrams into pi-
calculus expressions, and use existing tools to decide lazy soundness 
for a given business process.

The theoretical background of Lazy Soundness will be presented on 
Tuesday, September 5 16:30am, Room EI9.



Mapping Graphical 
Notations

• The Pi-Calculus can be used as a formal 
foundation for graphical notations; e.g.

• UML Activity Diagrams

• BPMN

• Allows for the execution, monitoring, and 
analysis of these “informal” notations
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BPMN2Pi Mapping Steps 
(Single Pools)

• Assign all flow objects an unique Pi-
Calculus agent identifier

• Assign all sequence flows an unique Pi-
Calculus name

• “Extend” the Pi-Calculus agents 
corresponding to the Workflow patterns

3



BPMN Example (1)
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Event-based Rerouting
(Simple Version)
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A = (vcheck)(A1|A2)
A1 = τA.check(v).[v = !]b.0

A2 = irE .c.check〈⊥〉.0 + check〈$〉.0
B = b.τB .B
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BPMN Example (2)
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Choreographies

• Formalized business processes can be 
combined to choreographies

• Questions:

• How to represent message flows?

• How to represent dynamic binding?

• How to represent correlations?
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Dynamic Binding and 
Correlations

• Idea: 

• Pi-Calculus names are used to represent 
message flows between a number of 
processes

• A combination of link passing mobility and 
scope extrusions realizes dynamic binding 
directly



Correlations

• A can invoke B several times

• Correlations managed by the restricted 
name ch:

Chapter 6

Interactions

In this chapter we discuss how a set of distributed business processes can synchronize and com-
municate based on interaction flows. Therefore all participating process graphs are placed inside
an interaction graph that is complemented with interaction flow. Due to link passing mobility
of the π-calculus not all interaction flows have to be statically pre-defined, but furthermore can
be created dynamically. Possible patterns given by the service interaction patterns for realizing
interactions between process graphs are discussed. Finally, we introduce reasoning on interac-
tion soundness for a given process graph and a set of services, as well as interaction equivalence
between services.

6.1 Representation

This section describes how distributed, interacting business processes are formally represented
in the π-calculus.

6.1.1 Correlations and Dynamic Binding

A common task between processes invoking other processes is matching the response. This
matchmaking is done using correlations that relate a response with a request. Usually, some
kind of correlation identifier is placed inside each request and response. The invoking as well as
the responding process have to take care of correlating the requests based on the identifiers. In
the π-calculus, the unique identifier of a request is represented by a restricted name. Since names
are unique and can be used as interaction channels, a clear representation of the correlations is
straightforward. Consider for instance the interacting business processes represented by the
agents A and B:

A
def= νch b〈ch〉.(ch(r).A′ | A) and B

def= νr b(ch).(τ.ch〈r〉.0 | B) .

Agent A is able to invoke B several times via b, even before a first response is received. B in
turn is able to process multiple request initiated via b at the same time. Hence, matching requests
and responses have to be correlated. This is done by utilizing ch in A as a correlation identifier.
Since ch is unique for each recursive execution of A, the matchmaking is done implicitly via ch .
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Send Interaction 
Pattern

• Send:

• Static binding:

• Dynamic binding:

CHAPTER 6. INTERACTIONS 135
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Figure 6.3: Single transmission bilateral interaction patterns.

The definition of an environment agent E for a certain agent S representing a service graph
states that S might have the possibility to interact with E. According to definition 103 (Envi-
ronment), this means that at least one interaction edge of S represented by the set of free names
of S is utilized. We can now state how S is formally unified with E, i.e. S ! E:

SYS def= ν(fn(S) ∪ fn(E)) (S | E) . (6.1)

The unification of a agent S representing a service graph and an environment agent E is given
by the parallel composition of S and E as well as restricting the free names of S and E.

6.2 Interaction Patterns

After having introduced the principles of interactions in the π-calculus, we investigate how
common patterns of interaction can be represented in different process, interaction, or service
graph structures. In particular, we investigate the service interaction patterns as described in
[24]. To give a more elaborate presentation of the patterns, we utilize the BPMN notation as
introduced in chapter 3.3.1. Example 5 (Partly Mapping of a BPD to a Process Graph) shows
how this notation can be mapped to process graphs. The description of the service interaction
patterns has been adapted to match the terminology used throughout this thesis.

6.2.1 Single Transmission Bilateral Interaction Patterns

The single transmission bilateral interaction patterns represent basic interaction behavior. Graph-
ical representations are shown in figure 6.3.

Pattern 50 (Send) Description: A process sends a message to another process. (According
to [24, p.4])
Implementation: A graphical representation of this pattern is shown in figure 6.3(a). The π-
calculus mapping implements a reliable delivery with a blocking semantics as follows:

A
def= 〈·〉.ch〈msg〉.0 .
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The implementation of pattern 50 (Send) does not show how A actually acquires the name
ch . If an interaction between A and a composition of other agents E is defined as

I
def= νch (A | E) ,

a static binding is described. If it is defined as

I
def= νlookup (lookup(ch).A | E) ,

with E being able to communicate a name used for interaction with a certain component of
itself via lookup, a dynamic binding is described. If an unreliable message transmission should
be modeled, an agent acting as a proxy between A and the environment has to be added (here
with static binding):

I
def= νch (A | B | E) ,

with B given by B
def= ch(x).B. Due to the non-determinisms contained in I , interactions

via ch can now be captured by B, thus providing an unreliable delivery. These considerations
on static vs. dynamic and reliable vs. unreliable message transmission hold for the remaining
interaction patterns as well.

Pattern 51 (Receive) Description: A process receives a message from another process.
(According to [24, p.5])
Implementation: A graphical representation of this pattern is shown in figure 6.3(b). The π-
calculus mapping implements a reliable reception with a blocking semantics as follows:

A
def= ch(msg).〈·〉.0 .

Pattern 52 (Send/Receive) Description: A process X engages in two causally related inter-
actions. In the first interaction X sends a message to another process Y (the request), while in
the second one X receives a message from Y (the response). (According to [24, p.7])
Implementation: A graphical representation of this pattern is shown in figure 6.3(c). The π-
calculus mapping implements a reliable interaction with a blocking semantics as follows:

I
def= νch1 (X | Y ) with X

def= νx1 (A | B), and Y
def= νy1 (Q | R) .

The components of X are given by:

A
def= νch2 νmsg 〈·〉.ch1 〈ch2 ,msg〉.x1 〈ch2 ,msg〉.0

and
B

def= x1 (ch2 ,msg).ch2 (resp).〈·〉.0 .

The components of Y are given by:

Q
def= ch1 (ch2 ,msg).〈·〉.y1 〈ch2 ,msg〉
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Tool support

12

• BPMN to pi-calculus mapper

• Graphical pi-calculus simulator optimized 
for the BPM domain (PiVizTool)

• Reasoners
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tool chain, further described in [13]. This tool chain exports business processes modeled

in BPMN[3] to an intermediate XML format, checks the business process diagram (BPD)

for structural soundness and converts the diagram to π-calculus agents. The algorithm
used for the conversion can be found in [15].

Solving the second problem of lacking tool support for π-calculus simulation is the aim
of the tool presented in this paper. To ease the modeling of π-systems for simulation as
input for this tool, the ASCII output produced by the converter tool mentioned above, can

be used.

3 π-Calculus Simulation

Besides the functionalities provided by the MWB and ABC tools, a functionality for ad-

vanced simulation of the evolution of π-calculus systems is desirable. Advanced simula-
tion in this context means to be presented with a visual representation of the π-calculus
system, being able to interactively select reductions of the monitored π-calculus system
to take place in the next step and being presented with an updated snapshot of the linking

structure of the system after each step with the possibility to select the next one. Such

simulation functionality is implemented by the PiVizTool. Its architecture is depicted as

a block diagram of the Fundamental Modeling Concepts (FMC)[7] notation in figure 2.

Rectangle shapes in this notation represent actors, being able to communicate with each

other and rounded shapes represent storages, that can be read or written to by actors.
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Verification

• Formalized business processes can be 
checked according to 

• Different kinds of soundness

• Compatibility

• Conformance

15



Reasoning about Soundness 
using Bisimulation Equivalences

16

• Idea:

• Use bisimulation to prove invariants of 
the formalized BPDs

• Invariants are denoted as „trivial“ agents

• Question:

• Where to start?



Observables

• What can we observe?

• Reductions

• Intra-actions

• Internal actions

• Interactions with the environment?

• Start Event, End Event, Service Invocations?

17



Action Semantics

• We‘re interested in observing „certain“ names:

• All free names of a system

• These can interact with the environment via 
matching input and output prefixes not contained 
in the system

• Requires a different semantics with a labeled 
transition system

18
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Figure 2.2: Flow graphs.

Nodes are denoted as circles with the name of the agent inside, where a hierarchical order
might be kept (i.e. agents consisting of more than one component might be collapsed or ex-
panded). Circles representing agents are connected using lines, where a dotted end denotes the
target node. A line is drawn from each agent containing an output prefix as the source node to
another agent containing a matching input prefix as the target node. Bound names are written
inside the circle that represents the corresponding agent, as near as possible to the connecting
edge. Free names are written as labels along the edges. Another example is given in figure
2.2(b), this time with vx (P | Q) | R given by

P
def= x〈a〉.P ′, Q

def= x(z).Q′, and R
def= a(u).R′ .

Figure 2.2(c) shows a system composed of three agents before and after an interaction. The
corresponding agents are given by

P
def= b(z).0 + x〈a〉.P ′, Q

def= x(y).Q′, and R
def= a〈.〉R′ ,

where only P and Q are interacting and evolve to P ′ and Q′. In all cases, it is possible to
only show important names and agents. For instance, P can behave as shown, but additionally
includes the name b as an input prefix that is not contained in the flow graph.

2.2.5 Action Semantics

The semantics of the π-calculus as applied throughout this thesis is given by a labeled transition
system that relies on structural congruence to minimize the transition relations.

Definition 6 (Labeled Transition System) A labeled transition system is a three–tuple (S, T,
t→

):

• S is a set of states,

• T is a set of transition labels, and

• t→⊆ S × S is a transition relation for each t ∈ T . !
The set of states is given by the grammar according to equation 2.2. The set of transition

labels, called actions, is derived from the prefixes.

Definition 7 (Actions) The actions α of the π-calculus are given by:

α ::= x〈y〉 | x(y) | x〈vz 〉 | τ ,

The LTS Actions
19



Bisimulation

• Let P and Q be two related agents. If P can 
evolve to P', then also Q must be able to 
evolve to Q' such that P' and Q‘ are again 
related. If the same holds for the opposite 
direction, starting from Q, the two agents 
are called bisimilar or bisimulation 
equivalent. 

20



Weak Bisimulation

• A weak bisimulation relates more agents by stating 
that an action of P can be weakly mimicked by Q 
(and vice versa):

• If P has an action alpha, then also Q has an action 
alpha enclosed in sequences of tau 

• The length of the tau sequences can be zero (i.e. it 
includes the previous definition) 

21



Structural Soundness

• According to the definition of a workflow 
net:

• A business process is structural sound if

• there exists exactly one initial node,

• there exists exactly one final node, and

• each node is on a path in between initial 
and final node.

22



Lazy Soundness

• Key concept:

• Each structural sound business process 
should always be able to deliver the 
result, regardless of the internal actions

• Invariant:

23

SLAZY
def
= i.τ.o.0



Observation of Lazy 
Soundness

• Idea: Observation of the Start and End-
Events:

• Questions:

• Waited long enough?

• Captured all possibilities?

24
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Black Box
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Figure 5.11: Black box investigation of a structural sound process graph.

black box with a pushbutton and a bulb. The pushbutton is used to start a new process instance,
whereas the bulb denotes the successful end of the process instance. The pushbutton corresponds
to the execution of the initial node of the contained process graph, whereas the bulb denotes the
execution of the final node. Each time the initial node is executed by pressing the pushbutton,
the observer should see the execution of the final node exactly once at a later point in time by
a flash of the bulb. If the observer cannot always observe the execution of the final node, the
process graph must have serious errors leading to deadlocks or livelocks. If the final node is
executed more than once, the observer is unable to detect when the process instance has ended.
Both observations are a desired correctness property for business processes. They guarantee that
once a business process is started it will always deliver a result.

The black box verification closely resembles the first criterion of definition 47 (Sound). It
states that a workflow net has the option to always complete:

∀M (i ∗−→ M) ⇒ (M ∗−→ o) .

The main difference is given by the fact that the Petri net based soundness definition is based on
states, whereas we would like to observe the occurrence of nodes. Similar to the given criterion
is our aim of capturing all possible states that can occur in between the start and the end of a
business process. However, the black box verification does not consider the second criterion of
soundness:

∀M (i ∗−→ M ∧M ≥ o) ⇒ (M = o) .

This is due to the fact that the external observer does not have any knowledge about the nodes
executed inside the black box. Hence, he cannot decide if further actions occur inside the black
box. The same holds for the third criterion of soundness:

∀t∈T∃M,M ′i
∗−→ M

t−→ M ′ .

Again, since the external observer has no knowledge about the nodes executed inside the black
box, he cannot judge if all of them participate in the business process.

Due to the lack of supporting other observations beside the execution of the initial and fi-
nal node, the black box verification provides a weaker soundness property than definition 47
(Sound) and the subset given by definition 56 (Weak Sound). It also misses definition 48 (Re-
laxed Sound), since equal to criterion three of soundness, observations regarding the executed
nodes are required. In particular, the black box verification approach gives raise to dead nodes
inside business processes (as forbidden by the second soundness criterion) as well as allowing
nodes to be active after the final node has been reached (as forbidden by the third soundness
criterion).



Proving Lazy Soundness

• Lazy soundness can be proved:

• Map the corresponding business process 
to agents

• Annotate the agents representing the 
initial and the final node with „i“ or „o“ 
accordingly

• Decide weak bisimulation equivalence 
between S_LAZY and the mapping 

25



Notes
• Lazy Soundness does not coincidence with existing 

soundness properties

• Allows activities to be active after the final node has 
been reached!

• These are called clean-up, or lazy activities

• Dead activities might be contained

• Requires the distinction between the point in time 
where a business process delivers the result vs. the 
moment it terminates

26



Example
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Existing Soundness 
Properties

• Weak Soundness:

• The delivery of the result denotes the termination of the 
business process

• Invariant:  The final activity is observed exactly once, and 
no other activity can be observed after the final node

• Relaxed Soundness:

• All activities participate in the business process

• Invariant: Each activity can be observed at least once

28



Extension of the Black 
Box

• The black box has to be extended:

• Bisimulation used for weak soundness (must)

• Simulation for relaxed soundness (can)

• Soundness is a combination of weak/relaxed sound

29
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Figure 5.12: Enhanced black box investigation of a structural sound process graph.

1. Map the structural sound process graph to π-calculus, following algorithm 1.

2. Annotate the π-calculus mapping for lazy soundness, following algorithm 3.

3. Check the annotated mapping for weak bisimulation equivalence with SLAZY .

4. If the equivalence holds, P is lazy sound. !

Appendix A.1.1 shows how example 7 (Simple Business Process Formalization) is proven
to be lazy sound using existing tools.

5.3.3 Weak Soundness

After the investigation of lazy soundness, which provides a soundness property closely related
to the first criterion of soundness (definition 47), we would like to mimic the second criterion
using bisimulation:

∀M (i ∗−→M ∧M ≥ o)⇒ (M = o) .

The criterion states that the termination and the end of a process instance are the same by en-
forcing that after the state o no other state can follow. Hence, no lazy activities are allowed in a
business process. As already motivated, this behavior can only be guaranteed by observing the
execution of the nodes inside the black box. In contrast to the Petri net based definition given
above, that enumerates all states, we are reducing the investigation to the activities found in a
business process. After the activity that is represented by the final node has been executed, no
other activities should be or become active. Since the first and the second criterion of soundness
are the same as weak soundness, we denote this property also as weak soundness. Informally, it
guarantees the following properties of a business process:

A process graph representing a business process is weak sound if in any case a result
is provided and the moment the result is provided, the business process terminates.

Due to the immediate termination of the business process, no lazy activities can remain. Further-
more, the result can only be provided once. For proving weak soundness, we need to be able to
observe the occurrence of nodes. If we can only observe the occurrence of nodes in between the
observation of the initial and the final node, we can be sure that the business process is termi-
nated at the moment the result is provided via the final node. An enhanced black box is shown
in figure 5.12.

The external observer starts a new instance of the structural sound process graph given into
the enhanced black box with a push of the start button. Thereafter he observes a flash of the step



Further Verification

• Compatibility:

• Lazy soundness can be extended to „Interaction 
Soundness“ representing a compatibility notion 
with support for dynamic binding

• Conformance:

• Bisimulation can be used as a conformance notion

30



The End.
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