# Eine einheitliche, formale Grundlage für dienstbasierte Architekturen 

Frank Puhlmann

Business Process Technology<br>Hasso Plattner Institut Potsdam, Germany

## Gliederung

- Motivation
- Betrachtete Konzepte
- Interaktionen
- Prozesse
- Daten
- Zusammenfassung

Motivation


## Dienstbasierte Architektur



## Dienstbasierte Architektur



## Dienstbasierte Architektur



## Dienstbasierte Architektur



Pi-Calculus Linkmobilität


Pi-Calculus Linkmobilität


Pi-Calculus Linkmobilität


Pi-Calculus Linkmobilität


## Dienstbasierte Architektur

## Konzepte

## Der Pi-Calculus

- Eine Prozessalgebra für Systeme mit Linkmobilität
- Syntax in BNF:

$$
\begin{aligned}
P & : \\
M & :=M|P| P^{\prime}|\mathbf{v} z P|!P \mid P\left(y_{1}, \cdots, y_{n}\right) \\
\pi & ::=\bar{x}\langle\tilde{y}\rangle|x(\tilde{z})| \tau \mid[x=y] \pi .
\end{aligned}
$$

## Interaktionen

- Dienstaufrufe:


## Interaktionen

- Dienstaufrufe:

$$
A=\bar{b}\langle m s g\rangle \cdot A^{\prime} \quad B=b(m s g) \cdot B^{\prime}
$$

## Interaktionen

- Dienstaufrufe:

$$
A=\bar{b}\langle m s g\rangle \cdot A^{\prime} \quad B=b(m s g) \cdot B^{\prime}
$$

Statisches Binden:

$$
S=(\mathbf{v} b)(A \mid B)
$$

## Interaktionen

- Dienstaufrufe:

$$
A=\bar{b}\langle m s g\rangle \cdot A^{\prime} \quad B=b(m s g) \cdot B^{\prime}
$$

Statisches Binden:

$$
S=(\mathbf{v} b)(A \mid B)
$$

Dynamisches
Binden: $S=(\mathbf{v} l o o k u p)($ lookup $(b) . A \mid((\mathbf{v} b) B \mid R))$

## Interaktionen

- Dienstaufrufe:

$$
A=\bar{b}\langle m s g\rangle \cdot A^{\prime} \quad B=b(m s g) \cdot B^{\prime}
$$

Statisches Binden:

$$
S=(\mathbf{v} b)(A \mid B)
$$

Dynamisches
Binden:

$$
S=(\mathbf{v} l o o k u p)(\operatorname{lookup}(b) . A \mid((\mathbf{v} b) B \mid R))
$$

$$
R=\overline{\overline{l o o k u p}}\langle b\rangle . R
$$

## Prozesse

- Basierend aufWorkflow-Pattern-Formalisierungen:


## Prozesse

- Basierend aufWorkflow-Pattern-Formalisierungen:

$$
\text { Sequence: } \quad A=\tau_{A} \cdot \bar{b} \cdot 0 \quad B=b \cdot \tau_{B} \cdot B^{\prime}
$$

## Prozesse

- Basierend aufWorkflow-Pattern-Formalisierungen:

$$
\begin{aligned}
\text { Sequence: } & A=\tau_{A} \cdot \bar{b} \cdot \mathbf{0} \quad B=b \cdot \tau_{B} \cdot B^{\prime} \\
& S Y S T E M=(\mathrm{v} b)(A \mid B)
\end{aligned}
$$

## Prozesse

- Basierend aufWorkflow-Pattern-Formalisierungen:

$$
\begin{array}{ll}
\text { Sequence: } & A=\tau_{A} \cdot \bar{b} \cdot \mathbf{0} \quad B=b \cdot \tau_{B} \cdot B^{\prime} \\
& S Y S T E M=(\mathrm{v} b)(A \mid B)
\end{array}
$$

Exclusive Choice: $A=\tau_{A} \cdot(\bar{b} .0+\bar{c} . \mathbf{0})$

## Prozesse

- Basierend aufWorkflow-Pattern-Formalisierungen:

$$
\begin{aligned}
\text { Sequence: } & A=\tau_{A} \cdot \bar{b} \cdot \mathbf{0} \quad B=b \cdot \tau_{B} \cdot B^{\prime} \\
& S Y S T E M=(\mathrm{v} b)(A \mid B)
\end{aligned}
$$

Exclusive Choice: $A=\tau_{A} \cdot(\bar{b} .0+\bar{c} . \mathbf{0})$
Simple Merge: $D=d_{1} \cdot \tau_{D} \cdot D^{\prime}+d_{2} \cdot \tau_{D} \cdot D^{\prime}$.

## Prozesse

- Basierend aufWorkflow-Pattern-Formalisierungen:

$$
\begin{aligned}
\text { Sequence: } & A=\tau_{A} \cdot \bar{b} \cdot \mathbf{0} \quad B=b \cdot \tau_{B} \cdot B^{\prime} \\
& S Y S T E M=(\mathrm{v} b)(A \mid B)
\end{aligned}
$$

Exclusive Choice: $A=\tau_{A} \cdot(\bar{b} .0+\bar{c} . \mathbf{0})$
Simple Merge: $D=d_{1} \cdot \tau_{D} \cdot D^{\prime}+d_{2} \cdot \tau_{D} \cdot D^{\prime}$
Deferred Choice: $A=\tau_{A} .\left(b_{\text {env }} \cdot \bar{b} \cdot \mathbf{0}+c_{\text {env }} \cdot \bar{c} \cdot \mathbf{0}\right)$

## Daten

- Keine native Unterstützung
- Allerdings: Lambda-Calculus im Pi-Calculus darstellbar
- Erweiterungen zur direkten Unterstützung von Daten vorhanden; allerdings
- Auf Kosten der Beweismöglichkeiten
- Beispiele im Papier


## Zusammenfassung

## Anwendungen

- Grafische Modelierung
- BPMN nach Pi-Calculus Konvertierer
- Ausführung \& Simulation
- PiVizTool
- Verifikation
- Verschiedene Soundness-Eigenschaften (MWB, ABC)


## Ergebnis

- Der Pi-Calculus unterstützt die formale Modellierung der betrachteten Konzepte
- Interaktionen inkl. dynamischen Binden,
- Prozesse sowie
- Daten
- in einer absteigenden Ausdrucksfähigkeit.


## Vielen Dank!

