
Towards a Formal Model
for Agile Service

Discovery and Integration

Frank Puhlmann, Hagen Overdick, Mathias Weske
Hasso-Plattner-Institute for IT Systems Engineering

at the University of Potsdam
D-14482 Potsdam, Germany

1

Goals

• To enables agile service discovery and invocation

• Formal Representation of

• orchestrations as well as

• choreographies

• Using a process algebra that provides dynamic process
structures ⇒ Pi-Calculus

• Extend work on representing workflow pattern
formalizations to the SOC domain

2

A

B

C

D

E

F

Service Environment

Example in BPMN

3

Orchestration

4

Mapping to the Pi-Calculus

5

A

B

C

D

E

F

N1 N2
N3

N4

N5
N6

N7

N8 N9

N10 N11

N12 N13

N14
N15

e1 e2

e3 e4

e5 e6

e7 e8

e9

e10 e11 e12

e13 e14 e15

e16

Mapping strategy

6

• Match all (workflow) patterns to their
corresponding Pi-Calculus representation

• Paper: Using the Pi-Calculus for Formalizing
Workflow Patterns (Puhlmann, Weske)

Sequence
7

A

N1 N2

e1

N1 N2
e1

N1 = evnSTART .e1.0

N2 = e1.τN2.e2.0

Exclusive Choice
8

A

N1 N2
N3

e1 e2

e3

e7

N1 N2
e1

N3
e2

e3

e7

Hold on!

9

• What about this construct?

B

D

N4

N5

e4

e5 e6

Event-based Rerouting

10

• New pattern!

• Represents the change of the control flow
based on an event (e.g. a message) that
occurs during the execution of an activity

• However, we can not stop the actual activity,
only reroute the control flow immediately

Event-based Rerouting
11

B

D

N4

N5

e4

e5 e6

N4

N5 N6 N8
e5

e4

e6

Choreography

12

Choreography
13

A

B

C

D

E

F

Service Environment

Correlations

14

• Pi-calculus supports the concepts of dynamic
channel creation via the new operator (v)

• Each channel provides:

• a unique identification and

• a communication channel

! Sufficient for correlations!

Service Invocation

• Algorithm:

• Create a new channel (a Pi-Calculus name)

• Invoke the server with the channel and request
as a parameter

• Wait for a response on the link

• Advantage: The link can be used as an identifier as
well as an unique response channel, so no
additional formalism or handling is required

15

Formal Service Invocation
16

vch service〈ch, request〉.ch(response)

Asynchronous/
Synchronous Invocation

• The introduced concept is always
asynchronous:

• Request/Response can be split over
different Pi-Calculus processes

• If there are no operations between the
request and response, we can call it
“synchronous invocation”

17

Formal Representation
18

N1 =TASK(envSTART , e1, envABORT , τN1)

N2 =TASK(e1, e2, envABORT , wreq1〈wresp1〉.τN2)

N3 =e2.τN3.([ce3 = #]e3|[ce7 = #]e7)

N4 =TASK(e3, e4, abortN5, wreq2〈wresp2〉.wresp2.τN4).0

N5 =envTIMEOUTN5.abortN5〈e5〉

N6 =TASK(e5, e6, envABORT , τN6)

N7 =TASK(e7, e8, envABORT , τN7)

N8 =vx(e4.x.0|e6.x.0|e8.x.0|x.e9.0)

CHOICEN9,N10,N12 =e9.(wresp2.e11.0 + envTIMEOUTN12.e14.0)

N11 =TASK(e13, e14, envABORT , τN11)

N13 =TASK(e14, e15, envABORT , τN13)

N14 =vx(e12.x.0|e15.x.0|x.e16.0)

N15 =TASK(e16, envDONE , envABORT , τN15)

Conclusion & Further
Work

• We (partly and illustrating) showed how to use the Pi-
Calculus in the service-oriented domain

• The Pi-Calculus has its pro’s in supporting

• Choreographies (esp. correlations)

• while also allowing powerful service orchestrations incl.
extensions to new patterns

• However, more research is required, e.g.

• formal reasoning (service equivalence, soundness)

• or precise mappings from graphical notations

19

Want more?

• http://pi-workflow.org

20

