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Goals

• To enables agile service discovery and invocation

• Formal Representation of

• orchestrations as well as

• choreographies

• Using a process algebra that provides dynamic process 
structures ⇒ Pi-Calculus

• Extend work on representing workflow pattern 
formalizations to the SOC domain
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Orchestration
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Mapping to the Pi-Calculus
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Mapping strategy
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• Match all (workflow) patterns to their 
corresponding Pi-Calculus representation

• Paper: Using the Pi-Calculus for Formalizing 
Workflow Patterns (Puhlmann, Weske)



Sequence
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Exclusive Choice
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Hold on!
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• What about this construct?

B

D

N4

N5

e4

e5 e6



Event-based Rerouting
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• New pattern!

• Represents the change of the control flow 
based on an event (e.g. a message) that 
occurs during the execution of an activity

• However, we can not stop the actual activity, 
only reroute the control flow immediately



Event-based Rerouting
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Choreography
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Choreography
13

A

B

C

D

E

F

Service Environment



Correlations
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• Pi-calculus supports the concepts of dynamic 
channel creation via the new operator (v)

• Each channel provides:

• a unique identification and

• a communication channel

! Sufficient for correlations!



Service Invocation

• Algorithm:

• Create a new channel (a Pi-Calculus name)

• Invoke the server with the channel and request 
as a parameter

• Wait for a response on the link

• Advantage: The link can be used as an identifier as 
well as an unique response channel, so no 
additional formalism or handling is required 

15



Formal Service Invocation
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vch service〈ch, request〉.ch(response)



Asynchronous/
Synchronous Invocation

• The introduced concept is always 
asynchronous:

• Request/Response can be split over 
different Pi-Calculus processes

• If there are no operations between the 
request and response, we can call it 
“synchronous invocation”
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Formal Representation
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N1 =TASK(envSTART , e1, envABORT , τN1)

N2 =TASK(e1, e2, envABORT , wreq1〈wresp1〉.τN2)

N3 =e2.τN3.([ce3 = #]e3|[ce7 = #]e7)

N4 =TASK(e3, e4, abortN5, wreq2〈wresp2〉.wresp2.τN4).0

N5 =envTIMEOUTN5.abortN5〈e5〉

N6 =TASK(e5, e6, envABORT , τN6)

N7 =TASK(e7, e8, envABORT , τN7)

N8 =vx(e4.x.0|e6.x.0|e8.x.0|x.e9.0)

CHOICEN9,N10,N12 =e9.(wresp2.e11.0 + envTIMEOUTN12.e14.0)

N11 =TASK(e13, e14, envABORT , τN11)

N13 =TASK(e14, e15, envABORT , τN13)

N14 =vx(e12.x.0|e15.x.0|x.e16.0)

N15 =TASK(e16, envDONE , envABORT , τN15)



Conclusion & Further 
Work

• We (partly and illustrating) showed how to use the Pi-
Calculus in the service-oriented domain

• The Pi-Calculus has its pro’s in supporting

• Choreographies (esp. correlations)

• while also allowing powerful service orchestrations incl. 
extensions to new patterns

• However, more research is required, e.g.

• formal reasoning (service equivalence, soundness)

• or precise mappings from graphical notations
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Want more?

• http://pi-workflow.org
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