
Variability Mechanisms in E-Business Process
Families?

Arnd Schnieders and Frank Puhlmann

Business Process Technology Group
Hasso-Plattner-Institute for IT Systems Engineering

at the University of Potsdam
D-14482 Potsdam, Germany

{arnd.schnieders, frank.puhlmann}@hpi.uni-potsdam.de

Abstract Nowadays, process oriented software systems, like many busi-
ness information systems, don’t exist only in one single version, but in
many variants for better coverage of the target market. Until now, the
corresponding customization has to be done manually, which is a time-
consuming and error-prone task, which could be realized much more
efficiently by applying process family engineering techniques. Process
family engineering is a modern software development approach, which
allows for the rapid and cost-effective development and deployment of
customer tailored process oriented systems. In this paper we present our
findings in the area of process family architectures for e-business systems,
described as variant-rich process models in the Business Process Mod-
eling Notation. We moreover address variability implementation issues
using Java variability mechanisms and code generators.

1 Introduction

Nowadays, process oriented software systems, like many business information
systems, don’t exist only in one single version, which covers the whole target
market. Instead, many different variants of the system exist, which are special-
ized according to diverging customer needs. Until now, the corresponding cus-
tomization has to be done manually, which is a time-consuming and error-prone
task. However, the ability to rapidly and cost-effectively develop and deploy cus-
tomer tailored system variants is crucial to the competitiveness of a company
developing business software. In order to cope with these challenges, techniques
for the efficient production of similar software systems have been developed.
These techniques, known as software product family engineering [1], have al-
ready been applied successfully in many enterprises [2]. However, up to now the
investigation of product family engineering techniques for families of process ori-
ented software, in short process family engineering, has been widely neglected,
which leads to an urgent need for research in this area. In this paper we there-
fore present our findings in the area of process family architectures for e-business
? The work reported in this paper has been supported by the German Ministry of

Research and Education by the PESOA project

2 Arnd Schnieders and Frank Puhlmann

systems, described as variant-rich process models in the Business Process Mod-
eling Notation (BPMN) [3] as well as variability implementation issues using
implementing variability mechanisms and code generators.

This paper is structured as follows: In section 2 we give a brief introduction to
some basic concepts and describe in section 3 their application to an e-business
process family. Section 4 defines a set of variability mechanisms for process family
architectures and examples for their implementation in Java. In section 5 we
illustrate our findings based on an exemplary process family of e-business shops.
In section 7 we summarize the contents of this paper and give an overview of
related work.

2 Preliminaries

In this section we give a brief introduction to Process Family Engineering, Pro-
cess Family Architectures, and Generative Programming.

2.1 Process Family Engineering

Product family engineering is a paradigm to develop software applications us-
ing a set of software subsystems and interfaces that form a common structure
based on which derivative products tailored to individual customer needs can be
efficiently developed according to [4]. Another important aspect is that within
a software product family reuse isn’t restricted to the reuse of implementation
artifacts but is expanded to any development artifact (like e.g. requirement or
design models).

Product family engineering is characterized by a so called dual lifecycle [5] as
indicated in figure 1 [6]. In order to emphasize that our work focuses on the devel-
opment of process-oriented software, we use the term process family engineering
instead of product family engineering and process family infrastructure instead
of product family infrastructure. However, the basic development process is the
same for product family engineering as for process family engineering. In the first
section of the process family development process (called process family engi-
neering) generic development artifacts (called the process family infrastructure)
are developed based on which process family members are derived efficiently in
the corresponding phase within the second section (called application engineer-
ing) of the process family engineering process.

2.2 Process Family Architectures

During the design of a process family a process family architecture (PFA) is
developed based on the process family requirements. The PFA acts as a refer-
ence architecture for the members of the process family and describes the basic
structure for the applications of the process family. It defines the reusable sys-
tem parts with their interfaces and covers both, the functional as well as the
non-functional requirements on the process family. Moreover, the PFA describes

Variability Mechanisms in E-Business Process Families 3

Process Family
Infrastructure

Process Family Engineering

Analysis Design Implementation

Application Engineering

Analysis Design Implementation

Figure 1. Process Family Engineering Process

which techniques shall be applied for realizing the variability (i.e. the variability
mechanisms) and on which variation points they shall be applied. The selection
of appropriate variability mechanisms is crucial for the design of the process fam-
ily since they can have a substantial impact on the functional and non-functional
properties of the system. Additionally, the proper selection of a variability mech-
anism guarantees for an easy generation of process family members based on the
process family infrastructure.

Thus, for supporting process family engineering, concepts and a notation for
process family architecture variability mechanisms (PFA variability mechanisms)
are required, which allow for modeling architecturally relevant decisions concern-
ing the realization of the system’s variability. Figure 2 describes the dependencies
between the process family requirements, the process family architecture, PFA
variability mechanisms and implementing variability mechanisms. The model is
structured according to the three phases of process family engineering into three
packages: Analysis, Design and Implementation. The requirements on the pro-
cess family members are realized by a corresponding PFA. The variability in the
process family is modeled by means of variation points to which variants can be
bound by means of PFA variability mechanisms. The variability mechanisms rep-
resented in the PFA are realized in the program code by so called implementing
variability mechanisms. During the implementation different variability mecha-
nisms can come into question, which can show different binding times. Which
variability mechanisms are available highly depends on the application domain
and the system to be implemented. The idea is that a set of implementing vari-
ability mechanisms with the same functional properties shall be represented by
the same PFA variability mechanisms. Thereby, the variability modeling takes
into account the functional and the resulting non-functional properties of the

4 Arnd Schnieders and Frank Puhlmann

variability implementation. Moreover, a binding time can be specified for the
variability, which is also application domain dependent.

Requirement on
Process Family

Member

functional

non-functional

Process Family
Architecture Variation Point

Variant

PFA-
Variability

Mechanism

Properties

functional

non-functional

2..*

1

1 1..*

1..*
1

*
1..*

0..*

1..*

1..*1..*

Analysis

Design

Implementation

Implementing
Variability

Mechanism

Figure 2. Role of Variability Mechanisms in Process Family Engineering

2.3 Generative Programming

According to [7] ”Generative Programming (GP) is a software engineering paradigm
based on modeling software system families such that, given a particular re-
quirements specification, a highly customized and optimized intermediate or
end-product can be automatically manufactured on demand from elementary,
reusable implementation components by means of configuration knowledge”. So,
in short, generative programming can be used to generate members of a product
(and therefore also a process) family. For specifying a member of the process
family configuration models are used. The configuration model based specifica-
tion of a process family member is then processed by the program generator to
generate the desired process family member.

3 E-Business Process Family

In this section we describe how the concepts described in section 2 apply to
the development of an e-business process family. We thereby follow the process
family engineering reference model shown in figure 1.

Variability Mechanisms in E-Business Process Families 5

Concerning the development of the process family infrastructure we use the
extended feature diagram notation suggested by [7] to describe the requirements
on the process family during the analysis phase. Based on these requirements a
process family architecture is developed during the design phase using BPMN en-
hanced by the PFA variability mechanisms for variability modeling as described
conceptually in section 2.2 and concretely in the following sections. We assume,
that dependencies between variabilities spreaded over the process family archi-
tecture can always be traced back to the selected feature configuration. Thus,
any variability in the process family architecture has to be linked to features
or feature combinations in order to be resolvable properly during application
engineering. However, since these linking descriptions can become arbitrarily
complex, we will show only a simplified version in the process model (see section
4.2), while the full linking information has to be handled by a tool. In the im-
plementation phase a program generator for the process family is implemented
based on the process family architecture. Here we assume the generator to em-
ploy the frame technology for software generation developed by [8], which is
based on the frame/slot concept for knowledge representation invented by [9].
Concerning the variability implementation, since we assume the e-business ap-
plication to be written in Java, Java specific variability mechanisms are used
to implement the PFA variability mechanisms applied in the BPMN based pro-
cess family architecture. However, our approach is not restricted to Java but
can be applied to any programming language and the programming language
specific variability mechanisms. In the analysis phase of application engineer-
ing the requirements on the e-business system to be developed are described by
deriving an application-specific feature model from the feature model created
during process family infrastructure development. Based on this feature model
an application specific process architecture (i.e. a BPMN model) is derived from
the process family architecture model (i.e. the variant rich BPMN model). The
application specific BPMN model is used as configuration model for the program
generator. Based on the BPMN model the generator derives application specific
Java components from the variant rich Java components and assembles them to
the desired e-business system.

4 Variability Mechanisms for E-Business Processes
Families

This section introduces a set of architecturally relevant variability mechanisms
for e-business process families. First we will give an overview of different cate-
gories of variability mechanisms in section 4.1 and a description of the respective
variability mechanisms in subsection 4.2.

4.1 Categories of Variability Mechanisms

In general, variability mechanisms can be categorized into basic variability mech-
anisms and variability mechanisms, which are derived from the basic variability

6 Arnd Schnieders and Frank Puhlmann

Basic Variability Mechanisms

Var. Mech.
Derived by
Restriction

Var. Mech.
Derived by

Combination

Figure 3. Categories of Variability Mechanisms

mechanisms. As the name indicates, basic variability mechanisms are stand-
alone mechanisms, which don’t require any other variability mechanisms. We
have identified four types of basic variability mechanisms: encapsulation of vary-
ing sub-processes, parameterization, addition/omission/replacement of single el-
ements, and data type variability. Since data flow is not supported directly in
BPMN, we will leave out the variability mechanism data type variability. More-
over, we support addition/omission/replacement of single elements only in a
restricted form by BPMN inheritance, which we will introduce in the following
section.

Concerning the second category of derived variability mechanisms we can fur-
ther divide this category into variability mechanisms derived by restriction and
by combination of other variability mechanisms as figure 3 shows. With BPMN
inheritance and extension we introduce two examples for variability mechanisms
derived by restriction and with design patterns an example for a variability mech-
anism derived by combination.

4.2 Variability Mechanisms

Each mechanism is described in four parts. A short description of the functional-
ity is followed by a BPMN representation. Thereafter, implementing variability
mechanisms in Java are discussed. While Java variability mechanisms are used
for variability implementation a code generator employing the frame technol-
ogy for software generation is used for configuration. We give a short example
for variability mechanism implementation and configuration in section 5.1. For
every variability mechanism we give continuative references.

According to the requirements for a process family architecture stated in
section 2.2, a variant-rich business process diagram needs to contain three ad-
ditions to standard business process diagrams. The first addition is a marking
of the places where variability occurs (variation point). Second, the possible
resolutions (variants) should be shown in the diagram. Third, the variability
mechanism used to derive the resolution should be shown.

Regarding the first requirement, the identification of variation points, we
propose to adapt the concept of a stereotype from the UML2 specification to
BPMN. Each activity, association, and artifact can have a stereotype attached.

Variability Mechanisms in E-Business Process Families 7

<<Abstract>>
Payment

Credit Card
and Invoice

Payment
+

<<Default>>
Credit Card

Payment
+

<<Implementation>><<Implementation>>

Variation Point

Variant as Symbol
Default
Variant

Figure 4. Encapsulation in BPMN.

For the purposes of a variant-rich business process diagram, the introduction of
a stereotype called �VarPoint� to represent a variation point and �Variant� to
represent a variant are sufficient. The �Variant� stereotype can also be expressed
graphically as a puzzle-piece like marker at the bottom of an activity. For a more
convenient illustration, a third stereotype �Variable� can be used to denote
variability below the level of detail currently shown.

The stereotype �VarPoint� can be further specialized. An �Abstract� vari-
ation point represents alternative behavior; it has to be resolved with a specific
variant. A �Null� variation point represents optional behavior; it can be resolved
with a specific variant. �Alternative� is a short representation of an abstract
variation point with a specific variant which is the default resolution to this
variation point. An �Optional� variation point is a short representation of a
�Null� variation point and a specific variant. The stereotype �Variant� can
have the tagged value feature which provides information about the dependency
of the subprocess variant from a certain feature configuration. Since these de-
pendencies can become arbitrarily complex, we provide only a simplified version
in the process family architecture. If the selection of a subprocess variant de-
pends on the selection of a number of features, the feature tagged value will
contain these features as a list of comma-separated feature names. However, if
the dependency is more complex, e.g. if a certain subprocess variant shall only
be selected if feature 1, 2, and 3 have been selected, but not feature 5 or 6, the
feature tagged value would contain the following expression: F(feature 1, feature
2, feature 3, feature 5, feature 6). This indicates that the dependeny is a more
complex one depending on the selection of the features given as parameter val-
ues. The concrete dependency information has to be maintained in a different
document, or by a tool.

4.3 Basic Variability Mechanisms

Encapsulation of Varying Sub-Processes

Functionality. Application-specific subsystem implementations are inserted into
an invariant subsystem interface.

8 Arnd Schnieders and Frank Puhlmann

Implementing
Variability Mechanism

(Java)

Slot configuration Binding Time

polymorphism with
subclasses

insertion of variant specific subclass
invocation/object generation
statement

compile time
runtime

interface implementation insertion of variant specific method
body into method header

compile time

dynamic class loading insertion of variant specific class
loading and subsequent typecast
statement

runtime

static libraries integration of variant specific
libraries during compilation

link time

Figure 5. Implementing Variability Mechanisms for PFA Variability Mechanism En-
capsulation of Varying Sub-Processes

PFA Variability Mechanism. A BPMN sub-process can hide alternative sub-
processes behind an invariant interface. Thereby, an interface is defined as the
set of input and output events of an activity. The interface activity is marked
with the stereotype �Abstract�. Possible realizations of the interface are con-
nected using associations marked with �Implementation�. Figure 4 shows the
encapsulation of a sub-process. The alternative behavior can occur at a task
marked with �Abstract� and the name of the variation point, which is Payment
in the figure. Possible implementations are shown as separate sub-processes, ei-
ther collapsed or expanded. If there exists a default implementation, it can be
marked with �Default�, like the sub-process Credit Card Payment in the fig-
ure. A directed association from the implementation sub-process to the variation
point marks the sub-process as a possible resolution to the variation point. The
associations have to be marked with the stereotype �Implementation�. Note the
use of a graphical symbol to represent the stereotype �Variant� at the bottom
of the sub-process Credit Card and Invoice Payment.

Implementing Variability Mechanism. We assume that BPMN activities are rep-
resented in Java as methods and BPMN pools as Java components providing an
interface of method declarations. The invariant Java method declarations encap-
sulate varying method implementations. Java provides several variability mech-
anisms that support variation in Java method implementations as shown in the
left column of figure 5. The respective configuration work performed by the code
generator for deriving a product variant is indicated in the middle column, while
the binding time for the implementing variability mechanism is show in the right
column. We thereby follow the binding time model in [10]. The implementing
variability mechanisms utilized here can be found in [10], and [11].

References. Encapsulation is a variability mechanism also pointed out by [12,
13] to be relevant on a design model level. Encapsulation is also referred to by
[14] as the utilization of black box components.

Variability Mechanisms in E-Business Process Families 9

Sales >
€ 50.000

Calculate
Bonus

Sales > €15.000

<<Parameterization>>

End of each year
<<Parameterization>>

End of each
quarter

Figure 6. Parameterization in BPMN.

Implementing

Variability Mechanism
(Java)

Slot configuration Binding Time

configuration files + java
branches

setting of variant specific
configuration file entry

runtime

database entries + java
branches

setting of variant specific database
entry

runtime

Figure 7. Implementing Variability Mechanisms for PFA Variability Mechanism Pa-
rameterization

Parameterization

Functionality. Using parameterization variants of subsystems are generated by
configuring a generic subsystem with a set of parameter values. The prerequisite
for parameterization is that all possible variants are provided in the subsystem’s
code.

PFA Variability Mechanism. In BPMN, each attribute can be parameterized to
support optional, alternative, or range variation points. Range variation points
denote enumerations like {Mo,We, Su} or a range of continues values as 0 · · · 300.
For a graphical representation, the attribute is written beside the element and
surrounded with a grouping box. Associations are used to link variant data ob-
jects that contain the possible parameters to the grouping box that surrounds the
attribute. The association is marked with the stereotype �Parameterization�.
Figure 6 shows the parameterization of two different attributes. The upper one
parameterizes the ConditionExpression attribute of a sequence flow. The de-
fault value is a guard that activates the sequence flow if the sales are greater
then e15.000. An alternative parameterization changes the attribute to activate
the sequence flow if the sales are greater then e50.000. The lower one offers an
alternative for the TimeDate attribute of the intermediate timer event. The de-
fault behavior triggers the event at the end of each year, whereas the alternative
behavior triggers the event at the end of each quarter.

Implementing Variability Mechanism. Figure 7 gives two examples for imple-
menting parameterization in Java using a code generator for configuration.

10 Arnd Schnieders and Frank Puhlmann

<<Null>>
Quality Check

Test Painting
+

<<Extension>>

(a) Null Activities.

<<Optional>>
Test Painting

(b) Optional Activities.

Figure 8. Extension in BPMN.

References. Parameterization is referenced as variability mechanism by [15, 12,
16].

4.4 Variability Mechanisms Derived by Restriction

Extension

Functionality. Extensions and extension points are used to extend an encapsu-
lated subsystem at predefined points, the extension points, by additional optional
behavior selected from a set of possible variants.

PFA Variability Mechanism. Extension points use a combination of encapsu-
lation and null sub-processes to realize optional variation points. An exten-
sion point activity is marked with the stereotype �Null�. Associations marked
with �Extension� connect optional implementations. Figure 8(a) uses extension
points to realize optional behavior. The extension point Quality Check is marked
with the �Null� stereotype. Possible resolutions are attached with associations
labeled with an �Extension� stereotype. If there is only one optional resolu-
tion of a variation point, it can be marked with the stereotype �Optional� and
directly placed between the sequence flows, without the use of a �Null� task,
shown in figure 8(b).

Implementing Variability Mechanism. For realizing extensions in Java imple-
menting variability mechanisms for encapsulating the extending and varying
sub-process implementations are required, which have been discussed in section
4.3. Moreover, a Null-Activity implementation is required, which doesn’t perform
any calculation but sticks to the interface of the Null-Activity (also including
any possible exceptions that might occur during the execution of the activity).

References. Extensions/Extension Points are a very common variability mecha-
nism referred to in many publications [17–19, 16].

Inheritance

Functionality. Inheritance adds restrictions to addition/omission/replacement of
single elements. Special inheritance transformation rules preserve the structural
integrity of the processes.

Variability Mechanisms in E-Business Process Families 11

<<Alternative>>
Credit Card

Payment
+

<<Inheritance>>

{feature=Invoice}
Credit Card and
Invoice Payment

+

(a) Simple Task Inheritance.

<<Alternative>> Credit Card Payment

Handle
Credit Card

Credit Card and Invoice Payment

Handle
Credit Card

Handle
Invoice

<<Inheritance>>

(b) Sub-Process Inheritance.

Figure 9. Inheritance in BPMN.

PFA Variability Mechanism. Inheritance modifies an existing (default) sub-
process by adding activities and pools regarding to specific rules. This allows
for realizing alternative variation points. An association represents inheritance
from the child activity to the parent activity when it is marked with the stereo-
type �Inheritance�. Figure 9(a) shows alternative behavior by the use of inher-
itance. The default variant is shown at the top of the figure, placed between
the sequence flows. It is marked with the �Alternative� stereotype as it is a
special notation of alternative behavior by encapsulation. The other alternative
is realized by inheritance, which is indicated by the �Inheritance� stereotype
at the association between the two sub-processes. The specialized sub-process
Credit Card and Invoice Payment belongs to the feature invoice as annotated
with the tagged value feature. The stereotype �Variant� is shown as a graphical
marker (the puzzle piece like symbol at the bottom of the sub-process). Figure
9(b) shows the expanded sub-processes of figure 9(a). It can be seen that the
task Handle Credit Card is reused in the specialization Credit Card and Invoice
Payment.

Implementing Variability Mechanism. As shown in figure 10 BPMN inheri-
tance transformations comprising the addition and replacement of activities and
pools can be realized using Java ”conditional compilation“ or by solely using
frames/slots.

References. Inheritance is referred to by [17, 12, 19, 20] as a variability mechanism
on the model level as well as on the code level.

12 Arnd Schnieders and Frank Puhlmann

Implementing

Variability Mechanism
(Java)

Slot configuration Binding Time

“java conditional
compilation”

setting of variant specific value for
static variable

compile time

pure frame/slot concept optional or variant specific inclusion
of method invocation (local or
remote method invocation)

compile time

Figure 10. Implementing Variability Mechanisms for PFA Variability Mechanism In-
heritance

<<Abstract>>
Payment

Credit Card
and Invoice

Payment
+

<<Default>>
Credit Card

Payment
+

<<Implementation>><<Implementation>>

<<Inheritance>>

Figure 11. Strategy Pattern in BPMN.

4.5 Variability Mechanisms Derived by Combination

Design Patterns

Functionality. Here we will concentrate on the Strategy Pattern as one of the
design patterns referenced most frequently in the context of product family engi-
neering. The idea of the strategy pattern is to make different algorithm variants,
which are hidden behind a common encapsulated interface, interchangeable. The
algorithm variants are derived from a default algorithm variant using inheritance.
Thus, the pattern combines encapsulation and addition/omission/replacement
of single elements.

PFA Variability Mechanism. The concepts of encapsulation and inheritance can
be used to implement design patterns that describe variability. There are no
additional graphical notations required; the patterns can be formed by the use of
the above mentioned concepts. Figure 11 implements the strategy design pattern.
It is derived from figure 4 with an additional inheritance relation between Credit
Card and Invoice Payment and Credit Card Payment.

Implementing Variability Mechanism. Since the strategy pattern is a combina-
tion of the two variability mechanisms encapsulation of varying sub-processes
and inheritance, a combination of the respective implementing variability mech-
anisms can be used for implementation.

References. Design Patterns [21] like ’Adapter’, ’Strategy’, ’Template Method’,
’Factory’, ’Abstract Factory’, ’Builder’, and ’Decorator’ [22] Pattern are fre-
quently referred to as variability mechanisms [17, 16, 12]. However, according to

Variability Mechanisms in E-Business Process Families 13

[23], except for a small number of Design Patterns any Design Pattern provides
a way to implement variability.

5 Example

Shop

Products Shopping
cart Checkout

Description Pictures Review Anonym Personal Persistent Credit Card Invoice

Figure 12. Features of the E-Business Shop.

This section presents a variant-rich process model for a process family of
e-business shops also demonstrating some variability implementation details. A
feature model is given in figure 12. An e-business shop consists of three manda-
tory features: products, shopping carts, and checkout. A product has a descrip-
tion as mandatory sub-feature, as well as optionally pictures and reviews. A
shopping cart has three optional sub-features. It can either be anonymous (e.g.
accessed by a proxy) or personalized. A personalized shopping cart allows for
customer dependent discounts. Furthermore, a shopping cart can be made persis-
tent, meaning that each time the customer returns, the shopping cart is loaded.
The checkout has one mandatory sub-feature, offering a credit card checkout
and an optional sub-feature invoice checkout.

Figure 13 contains the variant-rich high-level process model of the e-business
shop process family. We omitted the feature anonymous shopping cart for the
sake of simplicity. A new instance of the shop’s workflow is triggered by the
customer starting a new browser instance, thereby also creating a new instance
of the shop’s process (denoted with �New�). The customer then explores and
choses products in interaction with the shop, where the shop delivers product
information and composes the shopping cart. If the customer decides to buy, she
triggers the checkout sub-process of the shop. The shop then sends the delivery
and both parties additionally handle invoice payment if the feature is included
in this particular shop configuration.

The variant elements have been realized by different variability mechanisms.
The customer’s pool contains the optional behavior InvoiceCustomer, which is
represented by a null activity. If the feature Invoice is selected, the sub-process
Customer Invoice Payment is included at the extension point. The shop’s pool

14 Arnd Schnieders and Frank Puhlmann

Explorer
Products

Choose
Products
~

Buy Receive
Delivery

<<Null>>
InvoiceCustomer

<<Extension>>

{feature:Invoice}
Customer Invoice

Payment
+

<<Optional>>
{feature:Persistent}
Load Shopping

Cart

<<Variable>>
Deliver Product

Information

<<Variable>>
Compose

Shopping Cart

~

+

+

<<Variable>>
Checkout

+

Send
Delivery

<<Null>>
InvoiceShop

<<Extension>>

{feature:Invoice}
Shop Invoice

Payment
+

<<new>>

Sh
op

Cu
st

om
er

Order

Timeout

Figure 13. Top-level Process Model of the E-Business Shop.

has the optional task Load Shopping Cart, which is included if the feature Persis-
tent (shopping cart) is selected. The null activity InvoiceShop is filled with Shop
Invoice Payment if the invoice feature is selected. The task Shop Invoice Pay-
ment corresponds to the Customer Invoice Payment. As both variation points
are enabled by the same feature, their realizations always appear together. The
sub-processes Deliver Product Information, Compose Shopping Cart, and Check-
out contain variability at a lower level, denoted with the �Variable� stereotype.
For a lack of space we only consider the Checkout sub-process in detail.

Discou
nt=5%

Checkout
Acquire Products

<<Abstract>>
CalculateSum

Calculate Sum

<<Default>>

<<Implementation>>

{feature:Personalized
Shopping Cart}<<Inheritance>>

Discount=3%
<<Parameterization>>

Calculate
Sum

Calculate
Discount

<<Implementation>>

<<Alternative>>
Debit Credit Card

Debit Credit
Card

Create
Invoice

{feature:Invoice}
<<Inheritance>>

Figure 14. Checkout Sub-Process of the E-Business Shop.

Variability Mechanisms in E-Business Process Families 15

Figure 14 expands the sub-process Checkout. It uses the concept of design
patterns to describe the possible resolutions to the alternative variation point
CalculateSum. The first resolution implements the default behavior, i.e. it only
calculates the sum. The second, alternative resolution, specializes the default one
by using inheritance to add the additional calculation of a discount. The per-
centage of the discount is parameterized with a default value of 3. The task Debit
Credit Card also has an alternative implementation derived by using inheritance.

5.1 Implementation

In this section we will give a short example of how to implement the variabil-
ity within a variant-rich BPMN process model using Java specific implement-
ing variability mechanisms and a frame based code generator for configuration.
Let’s assume class CalculateSum in figure 15 implements the respective BPMN
activity in figure 14. The common interface for the two CalculateSum resolu-
tions is represented by the method interface calculateSumSubprocess. In order to
implement BPMN inheritance the imlementing variability mechanism Java con-
ditional compilation is used, which is realized using the static final boolean vari-
able PERSONALIZED SHOPPING CART. If the variable value is set to true
the shop feature Personal will be regarded in the target code. Else, the respective
code lines, which depend on the evaluation of the if-statement in line 90 will not
be considered by the Java compiler. For setting the variant specific value of the
PERSONALIZED SHOPPING CART variable, a slot has been defined, which
can be resolved during application engineering by selecting the corresponding
resolutions. Figure 15 also implements the configuration of the activity Calcu-
lateSum. Therefore, a parameter value is read from a configuration file leading
to a parameter dependent processing (line 240). The two alternative method
invocations (in line 280 and 330) shall illustrate that arbitrary parameter value
dependent processing could be performed. The respective configuration point for
the code generator is the parameter value in the configuration file, which isn’t
shown in the example.

6 Acknowledgements

The findings presented in this paper have been validated in a case study of an
e-business process family as part of the research project PESOA [24]. This case
study has been carried out together with a Bachelor project (with the name

”Magrathea“) at the Hasso-Plattner-Institute in cooperation with our PESOA
industry partners ehotel AG and Delta Software Technology GmbH. Ehotel pro-
vided the e-business processes, while Delta Software Technology provided the
tool HyperSenses [25] for code generator implementation and configuration. We
want to seize the opportunity to express our sincere gratitude to Cord Giese and
Winfried Buhl of Delta Software Technology as well as to Dr. Matthias Kose of
ehotel AG for their nice cooperation. We also want to give our special thanks to
the students of the ”Magrathea“ project for their enthusiasm in performing the
case study.

16 Arnd Schnieders and Frank Puhlmann

7 Conclusions

Process Family Engineering hasn’t been considered adequatly in research so far.
Therefore, in this paper we have introduced an approach for process family
architecture modeling and implementation, which contributes to a rapid and
cost-effective development and deployment of customer tailored process-oriented
business information system variants.

We have shown how a process family architecture for a family of e-business
systems can be modeled in BPMN. For representing variability in BPMN based
process family architectures we have introduced a set of variability mechanisms
for BPMN and outlined their implementation as well as their configuration using
HyperSenses program generators.

For modeling product family architectures a number of alternative techniques
have been proposed. There are for example approaches following the separation
of concerns principle. Examples are the Hyper/UML approach [26] and two in-
vestigations on the composition of Statechart diagrams [27, 28]. Another group
of publications suggests the explicit expression of variability within reference
architectures by means of UML annotations [29, 30]. Non-graphical approaches
comprise MOF-based product family architectures, which can be represented as
XMI files [31] and the parameterization of BPEL [32] processes [33]. Another
publication aims at representing EPC [34] based reference models [35]. Finally,
a group of techniques could be referred to as template approaches [36, 12]. The
work presented in this paper can be classified as a template approach. However,
in contrast to existing template approaches with our variability mechanism cen-
tric approach we want to allow for making decisions concerning the realization of
the product family variability during product family architecture development.
These decisions and their visualization shall then enable the requirements-driven
development of product family implementation artifacts and the easy derivation
of application-specific artifacts. Thereby, we focus on the behavioral aspects of
process-oriented systems, which have been neglected in product family engineer-
ing research so far.

References

1. Becker, M.: Adaptation Support in Software Product Families (in German). PhD
thesis, Technical University of Kaiserslautern (2004)

2. Reuys, A., Pohl, K., Gacek, C., Bermejo, J., Mart́ınez, J.M., van der Sterren,
W., Känsälä, K., Vehkomäki, T., Lerchundi, R., Mart́ınez, R.A.C., Dueñas, J.C.,
Mittrach, S., Waeber, F., Berde, B., Sophie, V.: System Family Process Frame-
works. ESAPS deliverable ESI-WP2-0002-04, University of Essen, Fraunhofer
IESE, Sainco, Philips, Nokia, European Software Institute, Universidad Politécnica
de Madrid, Siemens, Thomson-CSF/Alcatel LCAT (2000)

3. White, S.A.: Business Process Modeling Notation. BPMN 1.0, Business Process
Modeling Initiative (2004)

4. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer (2005)

Variability Mechanisms in E-Business Process Families 17

5. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based
Software Development Process. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1999)

6. European ESAPS Consortium: ITEA-ESAPS Full Project Proposal (1999)
7. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and

Applications. 1st edn. Addison Wesley, Reading, Massachusetts, USA (2000)
8. Basset, P.G.: Framing Software Reuse: Lessons learned from the Real World.

Yourdon Press (1997)
9. Minsky, M.: A Framework for Representing Knowledge. Mcgraw-Hill, New York

(1975)
10. Gacek, C., Anastasopoulos, M.: Implementing Product Line Variabilities. SIG-

SOFT Softw. Eng. Notes 26(3) (2001) 109–117
11. Flanagan, D.: Java in a Nutshell. 3rd edn. O’Reilly (1999)
12. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to

Pattern-based Software Architectures. Addison-Wesley Professional (2005)
13. Gomaa, H., Webber, D.: Modeling Adaptive and Evolvable Software Product

Lines Using the Variation Point Model. In: Proceedings of the 37th Annual Hawaii
International Conference on System Sciences. HICSS‘04, IEEE Computer Society
Press (2004) 1–10

14. van Gurp, J., Bosch, J., Svahnberg, M.: On the Notion of Variability in Software
Product Lines. In: Proceeedings of WICSA 2001. (2001)

15. Bachmann, F., Bass, L.: Managing Variability in Software Architectures. In: SSR
’01: Proceedings of the 2001 symposium on Software reusability, New York, NY,
USA, ACM Press (2001) 126–132

16. Svahnberg, M., Bosch, J.: Issues Concerning Variability in Software Product Lines.
Volume June of 146. Lecture Notes in Computer Science (2003)

17. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley, Harlow, England et al. (2000)

18. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. SEI
Series in Software Engineering. Addison-Wesley (2001)

19. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and
Organization for Business Success. Addison Wesley Longman, Harlow, England et
al. (1997)

20. Schnieders, A., Puhlmann, F.: Activity Diagram Inheritance. In: Proceedings of
the 8th International Conference on Business Information Systems BIS, Poznan,
Poland (2005)

21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of
Reusable Object-Oriented Software. Addison Wesley (1995)

22. Fritsch, C., Lehn, A., Rashidi, R., Strohm, T.: Variability Implementation Mecha-
nisms A Catalog (Internal Paper). Technical report, Robert Bosch GmbH (2002)

23. Speck, A., Clauß, M., Franczyk, B.: Concerns of Variability in ’Bottom-Up’
Product-Lines. In: Proceedings of Second Workshop on Aspect-Oriented Software
Development, Bonn, Universitt Bonn (2002) 19 – 24

24. PESOA Consortium: PESOA Homepage. (http://www.pesoa.de)
25. Giese, C., Buhl, W.: Software Generators (in German). PESOA-Report No.

04/2004. Technical report, Delta Software Technology GmbH (February 2004)
26. Philippow, I., Riebisch, M., Boellert, K.: The Hyper/UML Approach for Feature

Based Software Design. In: Proceedings of the 4th AOSD Modeling With UML
Workshop. (2003)

27. McNeile, A.T., Simons, N.: State Machines as Mixins. Journal of Object Technol-
ogy 2(6) (2003) 85–101

18 Arnd Schnieders and Frank Puhlmann

28. Prehofer, C.: Plug-and-Play Composition of Features and Feature Interactions
with Statechart Diagrams. Software and System Modeling (3) (2004)

29. Franczyk, B., Riebisch, M.: Extending the UML to Model System Families. In:
Proceedings of the IDPT 2000. (2000)

30. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML Profile for Software Product
Lines. In: PFE. (2003)

31. Jarzabek, S., Zhang, H.: XML-Based Method and Tool for Handling Variant Re-
quirements in Domain Models. In: Proceedings of the 5th IEEE International
Symposium on Requirements Engineering, IEEE Computer Society (2001)

32. et al., F.C.: Business Process Execution Language for Web Services version 1.1
(2003)

33. Karastoyanova, D., Leymann, F., Buchmann, A.P.: An Approach to Parameteriz-
ing Web Service Flows. In: ICSOC. (2005) 533–538

34. Keller, G., Nüttgens, M., Scheer, A.: Semantic Process Modeling Based on Event-
driven Process Chains (EPC) (in German). Veröffentlichungen des Instituts für
Wirtschaftsinformatik, University of Saarland, Saarbrücken Heft 89 (in Ger-
man) (1992)

35. Rosemann, M., van der Aalst, W.: A Configurable Reference Modelling Language.
Technical Report QUT Technical report, FIT-TR-2003-05, Queensland University
of Technology, Brisbane (2003)

36. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: GPCE 2005, Springer-Verlag GmbH (2005)

Variability Mechanisms in E-Business Process Families 19

010 public class CalculateSum
020 {
030 public static final boolean PERSONALIZED_SHOPPING_CARD = [PSC-VP1];
040
050 public static void calculateSumSubprocess()
060 {
070 calculateSum();
080
090 if(PERSONALIZED_SHOPPING_CARD)
100 {
110 calculateDiscount();
120 }
130 }
140
150 private static void calculateSum()
160 {
170 …
180 }
190
200 private static void calculateDiscount()
210 {
220 int parameterValue = readParameterValueFromFile();
230
240 switch(parameterValue)
250 {
260 case 3:
270 {
280 recalculateSumWithDiscount3();
290 break;
300 }
310 case 5:
320 {
330 recalculateSumWithDiscount5();
340 break;
350 }
360 }
370 }
380
390 private static int readParameterValueFromFile()
400 {
410 …
420 }
430
440 private static void recalculateSumWithDiscount3()
450 {
460 …
470 }
480
490 private static void recalculateSumWithDiscount5()
500 {
510 …
520 }
530 }

Figure 15. Example for Variability Implementation with Java and HyperSenses

