
Investigations on Soundness
Regarding Lazy Activities

Frank Puhlmann and Mathias Weske

Business Process Technology Group
Hasso-Plattner-Institute for IT Systems Engineering

at the University of Potsdam
D-14482 Potsdam, Germany

{puhlmann,weske}@hpi.uni-potsdam.de

Abstract. Current approaches for proving the correctness of business
processes focus on either soundness, weak soundness, or relaxed sound-
ness. Soundness states that each activity should be on a path from the
initial to the final activity, that after the final activity has been reached
no other activities should become active, and that there are no unreach-
able activities. Relaxed soundness softens soundness by stating that each
activity should be able to participate in the business process, whereas
weak soundness allows unreachable activities. However, all these kinds
of soundness are not satisfactory for processes containing discriminator,
n-out-of-m-join or multiple instances without synchronization patterns
that can leave running (lazy) activities behind. As these patterns occur
in interacting business processes, we propose a solution based on lazy
soundness. We utilize the π-calculus to discuss and implement reasoning
on lazy soundness.

1 Introduction

Business Process Management (BPM) aims at designing, enacting, managing,
analyzing, and adapting business processes [1]. A key technology for implement-
ing BPM systems are service-oriented architectures (SOA). These aim at sup-
porting business processes within and between companies [2]. However, they also
increase the complexity to be modeled, especially regarding interacting business
processes. Thus, special care has to be taken during the design phase to avoid
errors leading to deadlocks or livelocks. The former leads to processes stopping
execution and interaction with their environment, whereas the latter might con-
tinue working but the process is never finished. Three major approaches for
analyzing the correctness of business processes have been published: Soundness
[3], Relaxed Soundness [4], and Weak Soundness [5]. All three approaches op-
erate on a special type of business processes, called workflow nets [6] but they
can be adapted to graph-based approaches like BPMN, EPC, or UML Activity
Diagrams.

However, soundness, relaxed soundness, and weak soundness are not satisfac-
tory for processes containing discriminator, n-out-of-m-join or multiple instances

2 Frank Puhlmann and Mathias Weske

without synchronization patterns. These patterns are required in interacting
business processes for representing interaction patterns [7], as Racing Incoming
Messages (discriminator), One to many Send/Receive (n-out-of-m-join) or exe-
cute secondary tasks (multiple instances without synchronization). All of these
patterns can leave activities behind that are or can become active after the final
activity has been reached. Thereby, all processes containing these patterns are
not sound per definition (i.e. in terms of Petri nets they leave tokens in the net).
One example is a business process where three experts are asked to write an ex-
pertise each. The process can continue after two expertises have been received.
Only in certain cases a follow up activity has to wait for all three expertises
to continue, e.g. if the first two expertises are very different. As the experts
need different time for responding, the business process could have been already
finished while the last expert is still writing her expertise. However, all three ex-
perts have to be paid after delivering their work. In this case, there is a clean-up
or lazy-activitiy remaining (pay the last expert) that does in certain cases not
directly contribute to the successful execution of the business process, but is an
integral part of it.

Nevertheless, the given example might be relaxed sound. Relaxed sound pro-
cesses, in turn, might contain deadlocks or livelocks that should be avoided.
Weak soundness in contrast allows no activities to be active after the final activ-
ity has been reached. To overcome the limitations of soundness and weak sound-
ness regarding these patterns, and to go beyond relaxed soundness by proving
deadlock and livelock freedom, we propose a solution based on lazy soundness.
Lazy soundness will be derived, discussed and implemented based on business
processes formalized in the π-calculus, thus extending our prior work [8].

The paper is structured as follows. We first extend our motivation and discuss
related work, followed by the preliminaries required for formal process represen-
tation and analysis. The main part introduces lazy soundness for formalized
business processes, also including a running example. A tool support section
shows how the theoretical results can be applied practically and also takes a
look at performance. The paper concludes with an outlook of future work.

2 Motivation and Related Work

During our research on soundness for business processes defined in the π-calculus
[9], a process algebra that can formally represent all Workflow patterns [8] as
originally described in [10], we analyzed the soundness of discriminator, n-out-
of-m-join and multiple instances without synchronization patterns (denoted as
critical patterns in the remainder). These patterns can leave activities behind
that are or can become active after the final activity has been reached. Sound-
ness, in contrast, states that no activities are or can become active after a final
activity has been reached. Thus, all processes containing these patterns are not
sound per definition.

We investigated weak and relaxed soundness for supporting the critical pat-
terns [4,5]. Relaxed soundness indeed supports the patterns but relaxed sound

Investigations on Soundness Regarding Lazy Activities 3

Lazy
Sound

Relaxed
SoundWeak

Sound Sound

Fig. 1. A classification for different kinds of soundness.

processes might contain livelocks and deadlocks. Weak soundness proves pro-
cesses to be free of locks, but also forces all activities to finish before the final
one. Thus, it does not support the critical patterns. To overcome these limita-
tions we propose lazy soundness, complementing relaxed soundness by covering
livelocks and deadlocks, and extending weak soundness by allowing activities to
become active after the final activity has been reached. Unreachable activities
are not covered. However, by combining relaxed and lazy soundness we can prove
processes to be free of deadlocks, livelocks, and dead activities.

Figure 1 gives a classification of the different kinds of soundness. Lazy sound-
ness states that if an activity is reachable from the initial activity, then the final
activity is always reachable from this activity. (guarantees deadlock and livelock
freedom). Furthermore, the final activity will only be reached once to denote the
successful execution of the business process. Clean-up or so called lazy-activities
might still be or become active. Relaxed soundness states that all activities of
a business process participate in it (dead activity freedom). A relaxed sound
process might contain deadlocks or livelocks. Weak soundness is a subset of lazy
soundness by prohibiting lazy-activities, but still permitting dead activities. The
rules for soundness are fullfilled by the intersection of weak and relaxed sound-
ness, representing deadlock, livelock, and dead activity free processes without
lazy activities. The intersection of relaxed and lazy soundness without sound-
ness will not be investigated in this paper. Nevertheless, it offers interesting
properties.

An important piece of related work is YAWL [11]. YAWL claims to sup-
port all workflow patterns, but actually redefines some of them to fit the YAWL
semantics. Actually, the semantics of the critical workflow patterns has been
changed.1 A YAWL discriminator cancels all other tasks before the discrimina-
tor. A YAWL n-out-of-m-join only joins instances of the same activity, using a
multiple instance pattern. Finally, a multiple instances without synchronization
task has to be joined by an OR-join. All three solutions contradict the original
workflow patterns but allow a YAWL net to be sound. In [12], an approach of
reasoning in YAWL focusing on relaxed soundness is introduced, i.e. it requires
all activities of a business process to be on a path from the initial to the final
activity. However, this kind of reasoning also allows deadlocks and livelocks in
the process, which is too relaxed regarding formal analysis. Lazy soundness, in

1 See http://www.yawl.fit.qut.edu.au/about/patterns/ for details.

http://www.yawl.fit.qut.edu.au/about/patterns/

4 Frank Puhlmann and Mathias Weske

contrast, is based on π-calculus formalizations of the workflow pattern [8], that
capture the original semantics of the critical patterns, as these is required for
interacting business processes and even special cases of traditional ones.

3 Preliminaries

This section introduces the π-calculus and the representation of business pro-
cesses in it. Our motivation on using the π-calculus rather than other formalisms
like Petri nets is discussed in [13].

3.1 The π-calculus

The π-calculus is an algebra for the formal description and analysis of concurrent,
interacting processes with support for link passing mobility. It is based on names
and interactions used by processes defined according to [14].

Definition 1 (Pi Calculus). The syntax of the π-calculus is given by:

P ::= M | P |P ′ | vzP | !P
M ::= 0 | π.P | M + M ′

π ::= x〈ỹ〉 | x(z̃) | τ | [x = y]π .

The informal semantics is as follows: P |P ′ is the concurrent execution of P and
P ′, vzP is the restriction of the scope of the name z to P , and !P is an infinite
number of copies of P . 0 is inaction, a process that can do nothing, M + M ′

is the exclusive choice between M and M ′. The output prefix x〈ỹ〉.P sends a
sequence of names ỹ over the co-name x and then continues as P . The input
prefix x(z̃) receives a sequence of names over the name x and then continues
as P with z̃ replaced by the received names (written as { ˜name/z̃}). Matching
input and output prefixes might communicate, leading to an interaction. The
unobservable prefix τ.P expresses an internal action of the process, and the
match prefix [x = y]π.P behaves as π.P , if x is equal to y.

Throughout this paper, upper case letters are used for process identifiers and
lower case letters for names. Furthermore defined processes from the original
paper on the π-calculus are used for parametric recursion, that is A(y1, ..., yn)
[9]. The formal semantics of the π-calculus is based on transition systems. We
only give short definitions of the required concepts and refer to [14,15] for details.

Definition 2 (Transition Sequence). A sequence of interactions on names
or unobservable actions is denoted as P

α−→ P ′, where α describes the sequence
of actions required to transform a process P to P ′. �

Definition 3 (Context). A context is a process term with a hole, denoted as
[·]. The hole can be filled with a process other than 0. �

We write C[P] for a context C with [·] replaced by P. The replacement is literal,
which means that names free in P may be bound in C[P]. For example, let
C = vx(xa.0 | [·]), then C[x(y).0] = vx(xa.0 | x(y).0).

Investigations on Soundness Regarding Lazy Activities 5

Definition 4 (Observability Predicate). Observability predicate ↓µ on names
or co-names µ is defined by:

1. P ↓x if P can perform an input action with subject x and
2. P ↓x if P can perform an output action with subject x. �

The observables of a processes are then the free (unrestricted) names it can

use for receiving and sending. For example, P
def
= vz(!xz.0 | vz(wa.0 | w(v).0 +

y(u).0))), contains P ↓y and P ↓x as the observables of P .

Definition 5 (Weak Open Bisimulation Equivalence). Informally, two π-
calculus processes P and Q are weak open bisimulation equivalent, denoted as
≈o, if they have the same observable behavior regarding the observability predi-
cates ↓s̃. �

Thus, regarding weak open bisimulation, we abstract from all other internal
actions. Formal details can be found in [15].

3.2 Business Process Patterns in the Pi-Calculus

Business processes in the π-calculus have been introduced in [8], by giving a col-
lection of all workflow patterns [10] in their respective π-calculus formalization.
An additional pattern common in interacting business processes, called Event-
based Rerouting, has been presented in [16]. All pattern representations are based
on events rather than states. A π-calculus process representing an activity waits
for its required events (preconditions), does some internal action (functional
part), and thereafter generates new events (postconditions). A business process
formalized in the π-calculus consists of π-calculus processes representing different
workflow patterns and a set of names, used for representing events.

During our investigations on lazy soundness, some pattern formalizations
from [8] had to be refined since their original definitions are erroneous under
certain circumstances.

Deferred Choice. As the π-calculus supports no transactional transitions, we
need to make the choices in the preceding process to support loop behavior:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ C = c.τC .C ′ .

MI without Synchronization. B has to continue immediately, however instances
of B may still be active. This formalization gives a more applicable semantics
to the pattern while still corresponding to [10]:

A = τA.b.0 B = b.((
n∏

i=1

τB .0) | B′) .

6 Frank Puhlmann and Mathias Weske

Cancel Activity. Cancel activity has to accept a cancel event even after the
functional part τ has been executed to provide correct routing:

A =a.envA(test1).[test1 = ⊥].τA.envA(test2).[test2 = ⊥].A′

EA =envA〈⊥〉.EA + envA〈>〉.EA′ .

4 Process Graphs

This section defines how business processes are formalized in terms of set theory
and process algebra. It grounds structural correctness, that in turn is required
for behavioral analysis discussed later on.

4.1 Structure

We start with the definitions of a Process Graph, a data structure that represents
the behavioral aspects of a business process. Process graphs provide us with
a uniform semi–formal representation of business processes regardless of their
actual notations.

Definition 6 (Process Graph). A process graph is a four-tuple consisting of
nodes, directed edges, types and attributes. Formally: P = (N,E, T, A) with

– N is a finite, non-empty set of nodes.
– E ⊆ (N ×N) is a set of directed edges.
– T : N → 2TY PE is a function mapping nodes to types.
– A : N → KEY ×V ALUE is a function mapping key/value pairs to nodes.�

The nodes N of a process graph define the activities of a process, and the directed
edges E define dependencies between activities. Each node can have none, one,
or more types assigned by the function T . Furthermore, each node can hold
optional attributes represented by key/values pairs assigned by the function A.
Sub-Processes are represented by a node N of the special type Reference, that
references another process graph, i.e. T (N) = {Reference}. As such composed
process graphs can always be flattened, we only consider flat process graphs.
Some additional functions for accessing the sets of a process graph are given by:

– source : E → N returns the source node of a directed edge.
– target : E → N returns the target node of a directed edge.
– type : N → T returns the types of a node (same as T (N)).

To show the coherence between a process graph and a graphical notation, we give
an example of how to map the structurally relevant parts of a business process
to a process graph. We consider business processes given as a Business Process
Diagram (BPD) of the Business Process Modeling Notation (BPMN) [17]. Other
graph-based notations like EPCs or UML2 Activity Diagrams can be mapped
in a similar manner.

Investigations on Soundness Regarding Lazy Activities 7

A

B

C

2
N1 N2

N3

N4

N5

N6 N7 N8

e1

e2

e3

e4

e5

e6

e7

e8 e9
D

3

Fig. 2. A process containing a N-out-of-M-Join and a Multiple Instances without
Synchronization pattern.

Example 1 (Partly Mapping of a BPD to a Process Graph). A BPD is exemplary
mapped to a process graph P = (N,E, T, A) by the following steps:

1. N is given by all flow object of the BPD.
2. E is given by all sequence flows of the BPD.
3. T is given by the corresponding types of the flow objects.
4. A is given by additional attributes of flow objects, e.g.:

(a) The number of incoming sequence flows for an n-out-of-m-join node;
(b) The number of instances to be created for an activity;
(c) The nodes to be canceled for a cancel event. �

An actual example of a business process modeled in BPMN is given in Figure 2.
The process contains a n-out-of-m-join pattern, modeled by a gateway with the
number of required sequence flows inside, as well as a multiple instances without
synchronization pattern, modeled by activity D. The activities A, B, and C
can represent sub-processes for contacting three different experts for writing
an expertise. After two of them are ready, the process continues. However, some
cleanup work is left for the remaining activity, e.g. receiving the last expertise and
paying the expert. Although this does not directly contribute to the process, it is
still required. Activity D send the accepted expertises to three different involved
persons. This is again a lazy activity, as the business process can actually finish,
even while the documents are actually in delivery. The complete business process
diagram is mapped to a process graph according to the mapping rules given in
Example 1.

Example 2 (Expertise Process). The process graph P = (N,E, T, A) of the ex-
ample from Figure 2 is given by:

1. N = {N1, N2, N3, N4, N5, N6, N7, N8}
2. E = { (N1, N2), (N2, N3), (N2, N4), (N2, N5), (N3, N6), (N4, N6),

(N5, N6), (N6, N7), (N7, N8) }
3. T = {(N1, StartEvent), (N2, ANDGateway), (N3, Task), (N4, Task),

(N5, Task), (N6, N -out-of -M -Join), (N7,MIwithoutSync),
(N8, EndEvent)}

4. A = {(N6, (continue, 2)), (N7, (count, 3))} �

8 Frank Puhlmann and Mathias Weske

4.2 Semantics

We now give formal semantics to a process graph by mapping it to π-calculus
processes according to the following algorithm.

Algorithm 1 (Mapping Process Graphs to π-calculus Processes). A
process graph P = (PN , PE , PT , PA) is mapped to π-calculus processes as follows:

1. Assign all nodes of P an unique π-calculus process identifier N1 · · ·N |PN |.
2. Assign all edges of P an unique π-calculus name e1 · · · e|PE |.
3. Define the π-calculus processes according to the behavioral patterns found in

[8,16] as given by the type of the corresponding node. Take care of recursive
definitions for supporting loop behavior, under the restrictions that:
(a) All processes representing a node with no incoming edges do not support

re-execution, and
(b) All processes representing a node with no outgoing edges support re-

execution by recursion.
4. Replace each functional part τ of the behavioral patterns mapped before

with [·], thus constructing a context of each node.
5. Define a global process N = (ve1, · · · , e|PE |)

∏|PN |
i=1 Ni. This process can

contain further components or restricted names according to the contained
patterns. �

A node of a process graph is executed if the context of the corresponding π-
calculus process is reached. We can now map the process graph from Example
2 to π-calculus processes.

Example 3 (π-calculus Process for Expertise Process).

Tasks : N3 = e2.[·].(e5.0 | N3) , N4 = e3.[·].(e6.0 | N4)

N5 = e4.[·].(e7.0 | N5)

ANDGateway : N2 = e1.[·].(N2 | e2.0 | e3.0 | e4.0)
N -out-of -M -Join : N6 = (vh, run)(N61 | N62)

N61 = e5.h.0 | e6.h.0 | e7.h.0

N62 = h.h.run.h.N6 | run.[·].e8.0

MIwithoutSync : N7 = e8.([·].0 | [·].0 | [·].0 | e9.0 | N7)

StartEvent : N1 = [·].e1.0

EndEvent : N8 = e9.[·].N8

Global : N = (ve1, · · · , e9)
8∏

i=1

Ni

A task waits for preconditions (the incoming edges), executes the functional per-
spective abstracted by a context, and generates postconditions (i.e. co-names).
Although not required for the example, the processes use recursion to support

Investigations on Soundness Regarding Lazy Activities 9

loop behavior. Note that a BPMN AND Gateway combines two patterns, paral-
lel split and synchronization, into one node. The process N1 representing a Start
Event does not support re-execution by recursion. If a whole process should be
executed another time, a new instance of it has to be created. �

5 Structural and Lazy Soundness

This section introduces correctness criteria for process graphs. We distinguish
between structural and behavioral criteria. The former is denoted by structural
soundness, whereas the latter is given by soundness, relaxed soundness, and lazy
soundness. We focus on lazy soundness in this paper, although weak soundness
can be defined and proved in a similar manner.

5.1 Structural Soundness

Structural soundness for process graphs is based on the concepts introduced in
the following paragraphs.

Definition 7 (Path). A path in a process graph P = (N,E, T, A) is a sequence
of directed edges leading from one node to another. Formally, a path ε from n1

to n2 is written as: n1
ε→ n2 with n1, n2 ∈ N and ε ∈ E∗, where we allow an

empty sequence. An arbitrary path from n1 to n2 is denoted as n1
∗→ n2. �

Definition 8 (Reachability). A node of a process graph P = (N,E, T, A)
is reachable from another node if and only if there exist a path leading from
the first to the second node. Formally: n2 ∈ N is reachable from n1 ∈ N , iff
∃ε ∈ E∗ : n1

ε→ n2. �

Definition 9 (Defined Process Graph). A process graph P = (N,E, T, A)
is defined if and only if there is exactly one node of the type Initial Node, denoted
as Ni, that is not the target of any edge and exactly one node of the type Final
Node, denoted as No, that is not the source of any edge. Formally: ∃n ∈ N :
InitialNode ∈ type(n) ∧ ∀n1, n2 ∈ N : InitialNode ∈ type(n1) ∧ InitialNode ∈
type(n2) ⇒ n1 = n2 and ∃n ∈ N : FinalNode ∈ type(n) ∧ ∀n1, n2 ∈ N :
FinalNode ∈ type(n1) ∧ InitialNode ∈ type(n2) ⇒ n1 = n2. Furthermore:
∀n ∈ N : InitialNode ∈ type(n) ⇒ @e ∈ E : target(e) = n and ∀n ∈ N :
FinalNode ∈ type(n) ⇒ @e ∈ E : source(e) = n. �

Definition 10 (Strongly Connected Process Graph). A defined process
graph P = (N,E, T, A) is strongly connected, if and only if for all nodes exists
a path from the initial to the final node. Formally: ∀n ∈ N with Ni

∗→ n ⇒ n
∗→

No �

This definition is in contrast to common definitions of a strongly connected
directed graph, e.g. by Knuth [18]. We do not require a graph to be short circuited
for analysis.

10 Frank Puhlmann and Mathias Weske

Lemma 1. PMIN (N,E, T, A) = ({N1}, ∅, {(N1, InitialNode), (N1, F inal
Node)}, ∅) is the smallest strongly connected process graph.

Proof (Lemma 1). Direct proof. PMIN (N,E, T, A) is strongly connected as it is
defined by exactly one initial and final node, and the only node lies on an (empty)
path from the initial to the final node. Formally: ∃n1 ∈ N : InitialNode ∈
type(n1) ∧ ∃n2 ∈ N : FinalNode ∈ type(n2). ∀n1, n2 ∈ N : n1

∅→ n2. All
components of PMIN have the lowest possible count of elements for a strongly
connected process graph. Formally: |PMIN (N,E, T, A)| = (1, 0, 2, 0) following
from Definition 6 and 9. �

Definition 11 (Structural Sound). A process graph P = (N,E, T, A) is
structural sound if and only if:

1. There is exactly one initial node Ni ∈ N .
2. There is exactly one final node No ∈ N .
3. Every node is on a path from Ni to No. �

Structural soundness for process graphs adapts the definition of a workflow net
as a special kind of Petri net introduced in [6].

Lemma 2. A strongly connected process graph is structural sound.

Proof (Lemma2). Direct proof. Criterion 1 and 2 from Definition 11 are fulfilled,
as a strongly connected process graph is defined. Criterion 3 follows directly from
Definition 10. �

Lemma 3. PMIN (N,E, T, A) is structural sound.

Proof (Lemma 3). Follows directly from Lemma 1. �

Algorithm 2 (Deciding Structural Soundness). We describe an algorithm
for deciding structural soundness of a process graph P (N,E, T, A):

1. Check if P is defined, i.e. has exactly one initial and exactly one final node
(see Definition 9).

2. Check if P is strongly connected, i.e. if every node is on a path from the
initial to the final node (see Definition 10). �

5.2 Lazy Soundness

Lazy soundness extends structural soundness by taking the semantics of the
process nodes into account. Therefore it considers the π-calculus representation
of a process graph, which includes semantics for the types of the process nodes.
Lazy soundness states that there are no livelocks or deadlocks in the process
graph regarding the semantics of the nodes. Furthermore, the final node will be
executed exactly once, while other nodes representing activities can still be or
become executed. However, they must not trigger the final node again. To define
lazy soundness, we need the definition of semantic reachability, i.e. if a node lies
on a path from the initial to the final node according to the semantics of all
nodes.

Investigations on Soundness Regarding Lazy Activities 11

Definition 12 (Semantic Reachability). A node of a process graph P =
(N,E, T, A) is semantically reachable from another node if and only if there
exists a path leading from the first to the second node according to the semantics
of all nodes. �

Regarding the mapping of a π-calculus process from a process graph, a π-calculus
process representing a node is semantically reachable from another π-calculus
process representing a node, if and only if there exists a transition sequence from
the functional abstraction τ of the first process to the functional abstraction τ
of the second process. Lazy soundness is then defined as follows.

Definition 13 (Lazy Sound). A structural sound process graph P = (N,E, T,
A) is lazy sound if it represents a business process that is deadlock free and
livelock free, as long as the final node has not been reached. Once the final node
has been reached, other nodes might still be executed, however the final node is
not enacted again. Formally:

1. The final node No must be semantically reachable from every node n ∈ N
semantically reachable from the initial node Ni until No has been reached for
the first time.

2. The final node No is reached exactly once. �

To be able to trace the transition sequences required for semantics reachability,
we annotate the π-calculus mapping of a process graph with two observability
predicates ↓i, and ↓o. Using these predicates, we can observe the execution of
the initial activity by ↓i, and the final activity by ↓o.

Algorithm 3 (Lazy Soundness Annotated π-calculus Process). To
annotate a π-calculus process representing a process graph for reasoning on lazy
soundness, we need to fill the holes, i.e. [·] ,of the process definitions with:

– τ , if the the corresponding process graph node has incoming and outgoing
edges,

– i.τ , if the corresponding process graph node has only outgoing edges,
– τ.o, if the corresponding process graph node has only incoming edges, and
– i.τ.o if the corresponding process graph node has no incoming or outgoing

edges. �

An example can be found in Example 4. Due to the fact of being able to
observe the initial and the final activity, we can prove lazy soundness for process
graphs. Thus, for every activity reachable after the initial activity has been
observed, we must always be able to observe the final activity exactly once if
the process graph if lazy sound. If we observe the final activity more than once
or never at all, the process graph contains a deadlock or livelock. We derive
this theorem by constructing the smallest lazy soundness annotated π-calculus
mapping of a process graph and prove it to be lazy sound.

Lemma 4. SLAZY = i.τ.o.0 with the observability predicates ↓i and ↓o is the
smallest lazy soundness annotated π-calculus mapping of a process graph satis-
fying lazy soundness.

12 Frank Puhlmann and Mathias Weske

Proof (Lemma 4). The proof consists of two parts. We first show that SLAZY is
the smallest lazy soundness annotated π-calculus of PMIN . Secondly, we prove
that SLAZY is lazy sound by constructing all transitions.

1. Direct proof. SLAZY is the smallest lazy soundness annotated π-calculus
mapping of PMIN . It has exactly one node denoted by τ and no pre- or
postconditions. The initial node is exactly the final node, denoted by i before
and o after τ .

2. Direct proof. Lazy soundness for SLAZY is proved by constructing all transi-
tions: i.τ.o.0 i→ τ.o.0 τ→ o.0 o→ 0. The transition trace proves that the initial
node is always executed once (observability predicate ↓i), all possible transi-
tions are executed thereafter (one τ -transition), and eventually the final node
is executed (observability predicate ↓o) before SLAZY reaches inaction. �

Now we are ready to introduce the theorem for proving lazy soundness on
structural sound process graphs mapped to a lazy sound π-calculus representa-
tion.

Theorem 1. Each structural sound process graph P more complex than PMIN

is mapped to a lazy soundness annotated π-calculus process D, so that D ≈o
i,o

SLAZY if and only if P is lazy sound. �

Proof (Theorem 1). Direct proof. Each structural sound process graph more
complex than PMIN is mapped to a lazy soundness annotated π-calculus pro-
cess D with ↓i as the observability predicate of the initial node and ↓o as the
observability predicate of the final node. The observability predicates are thus the
invariants of the π-calculus processes. If a lazy soundness annotated π-calculus
process D ∼o

i,o SLAZY , the corresponding process graph P of D must then be
lazy sound. �

Algorithm 4 (Deciding Lazy Soundness). We describe an algorithm
for deciding lazy soundness of a structural sound process graph mapped to π-
calculus processes.

1. Map the structural sound process graph to π-calculus processes, following
Algorithm 1.

2. Annotate the π-calculus processes for lazy soundness, following Algorithm
3.

3. Check the annotated definition for weak open bisimulation equivalence with
SLAZY concerning ↓i and ↓o. �

This algorithm has already been implemented and will be discussed in the next
section.

6 Tool Support and Discussion

This section evaluates how the theoretical results achieved can be applied and
verified using existing tools such as Mobility Workbench (MWB), Advanced
Bisimulation Checker (ABC), or Open Bisimulation Checker (OBC) for deciding
weak open bisimulation equivalence on π-calculus processes [19,20,21].

Investigations on Soundness Regarding Lazy Activities 13

6.1 Tool Integration

To be able to integrate these tools into our theoretical framework, we have
created a tool chain consisting of several scripts. The first script is written in
AppleScript and exports a graphical BPMN business process diagram from Om-
niGraffle2 to a process graph. We had to use a slightly modified BPMN notation
to support all workflow pattern, as can been see in Figure 2 were we introduced
an n-out-of-m-gateway. We created Ruby scripts for deciding structural sound-
ness of process graphs, as well as mapping process graphs to lazy and weak
soundness annotated π-calculus processes. The generated π-calculus processes
are then used as input to the tools MWB and ABC for deciding lazy or weak
soundness. We illustrate lazy soundness by example in the corresponding input
style for MWB or ABC:

Example 4 (Lazy Soundness annotated π-calculus process of Example 3 for Tool
Analysis).
agent N8(e9,o)=e9.t.’o.N8(e9,o)
agent N7(e8,e9)=e8.(t.0 | t.0 | t.0 | ’e9.0 | N7(e8,e9))
agent N6(e5,e6,e7,e8)=(^h,run)(N6_1(e5,e6,e7,e8,h,run) | N6_2(e5,e6,e7,e8,h,run))
agent N6_1(e5,e6,e7,e8,h,run)=e5.’h.0 | e6.’h.0 | e7.’h.0
agent N6_2(e5,e6,e7,e8,h,run)=h.h.’run.h.N6(e5,e6,e7,e8) | run.t.’e8.0
agent N5(e4,e7)=e4.t.(’e7.0 | N5(e4,e7))
agent N4(e3,e6)=e3.t.(’e6.0 | N4(e3,e6))
agent N3(e2,e5)=e2.t.(’e5.0 | N3(e2,e5))
agent N2(e1,e2,e3,e4)=e1.t.(N2(e1,e2,e3,e4) | ’e2.0 | ’e3.0 | ’e4.0)
agent N1(e1,i)=i.t.’e1.0
agent N(i,o)=(^e1,e2,e3,e4,e5,e6,e7,e8,e9)(N8(e9,o) | N7(e8,e9) | N6(e5,e6,e7,e8) |

N5(e4,e7) | N4(e3,e6) | N3(e2,e5) | N2(e1,e2,e3,e4) | N1(e1,i))
agent S_LAZY(i,o)=i.t.’o.0

We can ask ABC for deciding weak open bisimulation equivalence on N and
SLAZY , thus deciding lazy soundness for the process graph from Example 2:

abc > weqd (i,o) N(i,o) S_LAZY(i,o)
The two agents are weakly related (315).
Do you want to see the core of the bisimulation (yes/no) ? no

Since N(i, o) is weak open bisimulation equivalent to SLAZY , the corresponding
process graph is lazy sound. By simply modifying the AND Gateway of the ex-
ample given in Figure 2 to an XOR Gateway in the corresponding lazy soundness
annotated π-calculus process, we can prove the corresponding process graph to
be not lazy sound:

abc > agent N2(e1,e2,e3,e4)=e1.t.(N2(e1,e2,e3,e4) | (’e2.0 + ’e3.0 + ’e4.0))
Agent N2 is defined.
abc > weqd (i,o) N(i,o) S_LAZY(i,o)
The two agents are not weakly related (9).
Do you want to see some traces (yes/no) ? no

Obviously, the modified process graph is not lazy sound as it contains a deadlock.

6.2 Supported Patterns and Performance

Tool support for reasoning on lazy soundness is still limited by the supported
patterns as well as performance. Multi merge and simple merge patterns behave
2 http://www.omnigroup.com/applications/omnigraffle/

http://www.omnigroup.com/applications/omnigraffle/

14 Frank Puhlmann and Mathias Weske

Fig. 2 Fig. 2 mod. Fig. A6 [6] Fig. 2 [16] Bookstore [24]

Nodes 8 nodes 8 nodes 10 nodes 15 nodes 21 nodes

MWB 10s < 1s < 1s 15s 6s

ABC 40s 2s 6s 275s 167s

ABC.opt 13s < 1s 2s 55s 50s

Lazy Sound? Yes No Yes Yes Yes

Table 1. Performance results for deciding lazy soundness.

the same (indeed, same π-calculus representation). Since the π-calculus has a
blocking semantics, parallel activation will be queued until the merge activity
is ready again. The synchronizing merge pattern in the π-calculus has non local
semantics and is thus only supported by workarounds ranging from introduc-
ing a local semantics (true/false token passing, corresponding split/choice and
synchronizing merge patterns, where the split/choice informs the corresponding
merge about the number of incoming arcs) to global analysis (e.g. delay synchro-
nizing merge while other transitions are possible). Further discussions regarding
the synchronizing merge pattern can be found in [22,23]. Arbitrary cycles are
only partly supported in MWB as well as ABC. These tools fail at deciding
processes with loops generating an infinite number of ↓o. This is indeed a tool
related issue, as the reasoning could be stopped immediately after more than
one o has been observed, instead of creating the full space state. A related issue
concerns multiple instances with a dynamic number of instances, either runtime
or without a priori knowledge. MWB as well as ABC fail for unknown reasons at
detecting the contained cycles, while they work at simple loops. However, both
issues are tool related and do not disturb the theory. For all patterns containing
cancellation, i.e. cancel activity, cancel case, event-based rerouting, we can not
actually stop the unobservable action τ , only immediately reroute the control
flow and cancel all related outgoing flows.

Regarding the performance of deciding weak open bisimulation, we are cur-
rently investigating existing tools. First practical results for business processes
containing different patterns have been collected in table 1.3 Some processes
have been converted to BPMN and can be found in the cited references. Figure
2 and the modified version have been discussed in this paper. Figure A6 from
[6] contains arbitrary cycles. Figure 2 from [16] contains event-based rerouting
and deferred choice patterns. The bookstore process from [24] contains multiple
deferred choices and arbitrary cycles.

7 Conclusion

In this paper, we introduced and discussed a new correctness criterion for busi-
ness processes, called lazy soundness. Lazy soundness proves a business process

3 Rough estimations measured on an Apple PowerBook G4 1.5GHz with 1.25GB RAM.

Investigations on Soundness Regarding Lazy Activities 15

to be deadlock and livelock free, but does not cover dead activities, or requires
all activities to be finished when a final activity is reached. It can be classified
below weak soundness and soundness, i.e. all sound and all weak sound busi-
ness processes are lazy sound, and beside relaxed soundness, i.e. a relaxed sound
business process can be lazy sound. A stronger kind of lazy soundness is weak
soundness, forcing all activities to finish before the final activity is reached.

Lazy soundness is an important correctness criterion for business processes,
as it supports reasoning on deadlock and livelock freedom without being to re-
strictive regarding so called clean-up or lazy-activities that can be left behind.
Our reasoning framework presented supports the original semantics of the work-
flow patterns discriminator, n-out-of-m-join, and multiple instances without syn-
chronization. It achieves this by utilizing the π-calculus as formal foundation.
All existing workflow patterns [8] as well as new routing patterns [16] can be rep-
resented in this calculus. It has strong theoretical reasoning capabilities based
on different kinds of bisimulation [14,15], that can be used to prove lazy sound-
ness. We already achieved first feasibility results using a tool chain for converting
BPMN business process diagrams to π-calculus processes that can be analyzed
using existing π-calculus tools. Obviously, the underlying concepts of lazy sound-
ness as discussed in section 2 can also be adapted to other formalizations like
workflow nets.

Further work will focus on complete support for soundness and relaxed sound-
ness, as well as reasoning on interacting business processes. Therefore, a special
capability of the π-calculus, namely channel-passing, will be of special interest
as it allows support for dynamic routing patterns [7]. Alongside, we will improve
tool development focusing on weak open bisimulation for π-calculus processes
representing workflow patterns.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M.: Business Process Manage-
ment: A Survey. In van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M., eds.:
Proceedings of the 1st International Conference on Business Process Management,
volume 2678 of LNCS, Berlin, Springer-Verlag (2003) 1–12

2. Burbeck, S.: The Tao of e-business services. Available at: http://www-128.ibm.
com/developerworks/library/ws-tao/ (2000)

3. van der Aalst, W.M.P.: Verification of Workflow Nets. In Azéma, P., Balbo, G.,
eds.: Application and Theory of Petri Nets, volume 1248 of LNCS, Berlin, Springer-
Verlag (1997) 407–426

4. Dehnert, J., Rittgen, P.: Relaxed Soundness of Business Processes. In Dittrich,
K., Geppert, A., Norrie, M.C., eds.: CAiSE 2001, volume 2068 of LNCS, Berlin,
Springer-Verlag (2001) 157–170

5. Martens, A.: On Compatibility of Web Services. Petri Net Newsletter 65 (2003)
12–20

6. van der Aalst, W., van Hee, K.: Workflow Management. MIT Press (2002)
7. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In van

der Aalst, W., Benatallah, B., Casati, F., eds.: Proceedings of the 3rd Interna-
tional Conference on Business Process Management, volume 3649 of LNCS, Berlin,
Springer-Verlag (2005) 302–318

http://www-128.ibm.com/developerworks/library/ws-tao/
http://www-128.ibm.com/developerworks/library/ws-tao/

16 Frank Puhlmann and Mathias Weske

8. Puhlmann, F., Weske, M.: Using the Pi-Calculus for Formalizing Workflow Pat-
terns. In van der Aalst, W., Benatallah, B., Casati, F., eds.: Proceedings of the
3rd International Conference on Business Process Management, volume 3649 of
LNCS, Berlin, Springer-Verlag (2005) 153–168

9. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I/II.
Information and Computation 100 (1992) 1–77

10. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.: Work-
flow Patterns. Technical Report BETA Working Paper Series, WP 47, Eindhoven
University of Technology (2000)

11. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage (Revised version. Technical Report FIT-TR-2003-04, Queensland University
of Technology, Brisbane (2003)

12. Verbeek, H., van der Aalst, W., ter Hofstede, A.: Verifying Workflows with Cancel-
lation Regions and OR-joins: An Approach based on Invariants, BETA Working
Paper Series, WP 156. Technical report, Eindhoven University of Technology,
Eindhoven, The Netherlands (2006)

13. Puhlmann, F.: Why do we actually need the Pi-Calculus for Business Process
Management? In: Proceedings of the 9th International Conference on Business
Information Systems. (2006) (to appear)

14. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Paper-
back edn. Cambridge University Press, Cambridge (2003)

15. Sangiorgi, D.: A Theory of Bisimulation for the Pi-Calculus. In: CONCUR ’93:
Proceedings of the 4th International Conference on Concurrency Theory, Berlin,
Springer-Verlag (1993) 127–142

16. Overdick, H., Puhlmann, F., Weske, M.: Towards a Formal Model for Agile Service
Discovery and Integration. In Verma, K., Sheth, A., Zaremba, M., Bussler, C., eds.:
Proceedings of the International Workshop on Dynamic Web Processes (DWP
2005). IBM technical report RC23822, Amsterdam (2005)

17. BPMI.org: Business Process Modeling Notation. 1.0 edn. (2004)
18. Knuth, D.E.: The Art of Computer Programming. 3rd edn. Volume 1. Addison–

Wesley (1997)
19. Björn Victor, Faron Moller, M.D., Eriksson, L.H.: The Mobility Workbench. Avail-

able at: http://www.it.uu.se/research/group/mobility/mwb (2005)
20. Briais, S.: ABC Bisimulation Checker. Available at: http://lamp.epfl.ch/

∼sbriais/abc/abc.html (2003)
21. Frendrup, U., Jensen, J.N., Hüttel, H.: OBC Workbench. Available at: http:

//www.cs.auc.dk/research/FS/ny/PR-pi/ (2001)
22. Wynn, M., Edmond, D., van der Aalst, W., ter Hofstede, A.: Achieving a General,

Formal and Decidable Approach to the OR-join in Workflow using Reset nets
(2005)

23. Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In Desel, J., Pernici, B., Weske, M., eds.: Proceedings of the 2nd Interna-
tional Conference on Business Process Management, volume 3080 of LNCS, Berlin,
Springer-Verlag (2004) 82–97

24. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational
Workflow. In Dittrich, K., Geppert, A., Norrie, M., eds.: Proceedings of the
13th International Conference on Advanced Information Systems Engineering
(CAiSE’01), volume 2068 of LNCS, Berlin, Springer-Verlag (2001) 140–156

http://www.it.uu.se/research/group/mobility/mwb
http://lamp.epfl.ch/~sbriais/abc/abc.html
http://lamp.epfl.ch/~sbriais/abc/abc.html
http://www.cs.auc.dk/research/FS/ny/PR-pi/
http://www.cs.auc.dk/research/FS/ny/PR-pi/

	Investigations on SoundnessRegarding Lazy Activities
	Frank Puhlmann and Mathias Weske

