
Extending BPMN for Modeling
Complex Choreographies

Gero Decker and Frank Puhlmann
Hasso Plattner Institut

Potsdam, Germany

Lazy Soundness
A Prototypical Tool-Chain

Lazy Soundness is a new kind of soundness dealing with so called

left-behind or lazy activities. Since these activities can be active while

the final activity of the business process has already been reached,

processes containing these activities can never be sound. Lazy

soundness provides a criterion to prove business processes containing

these activities to be free of deadlocks and livelocks.

Prof. Dr. Mathias Weske
Frank Puhlmann
Business Process Technology Group
Hasso Plattner Institute
Campus Griebnitzsee
14482 Potsdam, Germany

http://bpt.hpi.uni-potsdam.de

A business process containing Discriminator, N-out-of-M, or Multiple

Instances without Synchronization patterns (called the critical patterns),

such as

A

B

C

2 D

Problem

Solution

Structural

Sound Process

Initial

Node

Final

Node

A, B, and C represent three web service
interactions.

After two of them have completed, D is
executed and thereafter the process is
finished.

However, one of the activities is still active, and clean-up
work like payment and documentation has to be done.

As the remaining activity contradicts the soundness definition, we can

not use existing tools to verify the sample business process. Still,

automated verification regarding deadlocks and livelocks is quite

important even if you employ one of the critical patterns in your

business process.

Lazy Soundness proves business processes

containing the critical patterns (and all others) to

be free of deadlocks and livelocks. Technically, it

abstracts from all internals of the process and

just considers the initial and final node. The

abstracted process is verified using bisimulation

techniques.

Demo Presentation:

Thursday, Sep 7 10:30am, Room EI10

Lazy soundness has been implemented in a prototypical tool chain at

our research group. We provide a graphical editing of business

processes using BPMN, automatically formalize BPM diagrams into pi-

calculus expressions, and use existing tools to decide lazy soundness

for a given business process.

The theoretical background of Lazy Soundness will be presented on

Tuesday, September 5 16:30am, Room EI9.

Auctioning Scenario

E
x
ten

d
in

g
B

P
M

N
for

M
o
d
elin

g
C

om
p
lex

C
h
oreograp

h
ies

3

!"#$%&'(()%

*"&&+,"%
-./01'#%

2",1#&

-./01'#%

'3"(

!"#$%+./01'#%

/("+01'#%("45

!"#$%/'*67"8

01'#%#'0195%

!"#$%/'*67"8

01'#%#'0195%

!"#$%

6+)*"#0%

!
"
77"
(

-
.
/
01
'
#
1#
,
%!
"
(3
1/
"

:
1$
$
"
(!
'
((
)
%*
&
,

;
'
*
6
7"
01
'
#
%

#
'
01
91
/
+
01
'
#

<
#
&
.
/
/
"
&
&
9.
7%

/
'
*
6
75
%#
'
01
95

=
+
)
*
"
#
0

-
.
/
01
'
#
%

/
("
+
01
'
#
%(
"
4
.
"
&
0

!"#$%21$%

-./01'#%

'3"(

>"/"13"

%21$%

-#)%

21$&?
!"#$%.#&.//5%

/'*67"01'#%

#'0195

!"7"/0%

2.)"(

=
('
$
.
/
0

!"#$%6('$./0

;
'
*
6
7"
01
'
#
%

#
'
01
91
/
+
01
'
#

#'

)"&

F
ig.1.

B
P

M
N

choreography
describing

an
auctioning

scenario

2

Open Aspects

• Multiplicity of participants

• We need to distinguish the buyers

• Correlations

• Between auctioning service and bidders

• Participant reference passing

• The winning bidder needs to contact the seller

3

Proposed BPMN
Extensions

• Participant sets to represent multiple
participants

• Correlations via references

• Reference passing

4

Participant Sets

• A participant set represents a set of
participants of the same type

• Allows distinction between scenarios
where at most one or more participants
are involved in a conversation

5

Extending BPMN for Modeling Complex Choreographies 5

P
a
rt
ic
ip
a
n
t

(a) Participant sets

Task

name

<ref>

Task

name

<ref>

(b) References

name

<ref>
names

<ref>

(c) Reference sets

!"#$

%&$'(

)
"
&*
+,
+-
"
!
*

."/0

!"#$

%&$'(

."/0

!"#$

%&$'(

."/0

!"#$

%&$'(!"#$/

%&$'(

(d) Reference passing

Fig. 2. BPMN extensions

can be potentially many participants involved. In our auctioning example, there
is exactly one seller and one auctioning service involved in one conversation.
However, we have potentially many bidders involved.

For representing multiple participants we introduce shadowed pools as new
notational element, shown in figure 2(a). A set of participants of the same type
involved in the same conversation is called a participant set.

3.2 References

The main challenge with participant sets is that we need to distinguish individual
participants out of this set. We do this via references as shown in figure 2(b).
A reference is a special data object enhanced with 〈ref〉. A reference can be
connected to a flow object via associations. We give the following semantics to
the different connection directions:

– A reference can be written by a flow object (represented by an association
from the flow object to the reference). (i) If the flow object is a receive
activity, e.g. an intermediate message event or an activity with incoming
message flow, the reference will point to the sender upon message receipt. If
the reference already pointed to a participant, the reference will simply be
overwritten. (ii) If the flow object is not a receive activity, it is not specified
what participant the reference will point to. Consider the selection of the
buyer in our example.

– A reference can be read by a flow object (represented by an association from
the reference to the flow object). (i) If the flow object is a send activity,
the message will be sent to the participant the reference points to. In our
example the auctioning service sends a completion notification to exactly
that bidder out of the bidder set, who was selected to have won the auction.
(ii) If the flow object is a receive activity, then a message is only awaited

References
• A reference is a special data element connected to a flow

element

• It can either be written or read

• Write: If the flow object is a receive activity, the reference
will point to the sender upon receipt

• Read 1: If the flow object is a send activity, the message will
be sent to the participant the reference points to

• Read 2: If the flow object is a receive activity, the message is
only awaited from the referred participant

Extending BPMN for Modeling Complex Choreographies 5

P
a
rt
ic
ip
a
n
t

(a) Participant sets

Task

name

<ref>

Task

name

<ref>

(b) References

name

<ref>
names

<ref>

(c) Reference sets

!"#$

%&$'(

)
"
&*
+,
+-
"
!
*

."/0

!"#$

%&$'(

."/0

!"#$

%&$'(

."/0

!"#$

%&$'(!"#$/

%&$'(

(d) Reference passing

Fig. 2. BPMN extensions

can be potentially many participants involved. In our auctioning example, there
is exactly one seller and one auctioning service involved in one conversation.
However, we have potentially many bidders involved.

For representing multiple participants we introduce shadowed pools as new
notational element, shown in figure 2(a). A set of participants of the same type
involved in the same conversation is called a participant set.

3.2 References

The main challenge with participant sets is that we need to distinguish individual
participants out of this set. We do this via references as shown in figure 2(b).
A reference is a special data object enhanced with 〈ref〉. A reference can be
connected to a flow object via associations. We give the following semantics to
the different connection directions:

– A reference can be written by a flow object (represented by an association
from the flow object to the reference). (i) If the flow object is a receive
activity, e.g. an intermediate message event or an activity with incoming
message flow, the reference will point to the sender upon message receipt. If
the reference already pointed to a participant, the reference will simply be
overwritten. (ii) If the flow object is not a receive activity, it is not specified
what participant the reference will point to. Consider the selection of the
buyer in our example.

– A reference can be read by a flow object (represented by an association from
the reference to the flow object). (i) If the flow object is a send activity,
the message will be sent to the participant the reference points to. In our
example the auctioning service sends a completion notification to exactly
that bidder out of the bidder set, who was selected to have won the auction.
(ii) If the flow object is a receive activity, then a message is only awaited

6

Reference Sets

• Covers sets of participants involved in one conversation

• A reference set can be modified or read

• Modify: If the flow object is a receive activity, a reference
to the sender will be added to the set

• Read: If the flow object is a looped activity, the reference
set determines the number of repetitions or instances

• Looped send: A message is sent to each participant of
the reference set

Extending BPMN for Modeling Complex Choreographies 5

P
a
rt
ic
ip
a
n
t

(a) Participant sets

Task

name

<ref>

Task

name

<ref>

(b) References

name

<ref>
names

<ref>

(c) Reference sets

!"#$

%&$'(

)
"
&*
+,
+-
"
!
*

."/0

!"#$

%&$'(

."/0

!"#$

%&$'(

."/0

!"#$

%&$'(!"#$/

%&$'(

(d) Reference passing

Fig. 2. BPMN extensions

can be potentially many participants involved. In our auctioning example, there
is exactly one seller and one auctioning service involved in one conversation.
However, we have potentially many bidders involved.

For representing multiple participants we introduce shadowed pools as new
notational element, shown in figure 2(a). A set of participants of the same type
involved in the same conversation is called a participant set.

3.2 References

The main challenge with participant sets is that we need to distinguish individual
participants out of this set. We do this via references as shown in figure 2(b).
A reference is a special data object enhanced with 〈ref〉. A reference can be
connected to a flow object via associations. We give the following semantics to
the different connection directions:

– A reference can be written by a flow object (represented by an association
from the flow object to the reference). (i) If the flow object is a receive
activity, e.g. an intermediate message event or an activity with incoming
message flow, the reference will point to the sender upon message receipt. If
the reference already pointed to a participant, the reference will simply be
overwritten. (ii) If the flow object is not a receive activity, it is not specified
what participant the reference will point to. Consider the selection of the
buyer in our example.

– A reference can be read by a flow object (represented by an association from
the reference to the flow object). (i) If the flow object is a send activity,
the message will be sent to the participant the reference points to. In our
example the auctioning service sends a completion notification to exactly
that bidder out of the bidder set, who was selected to have won the auction.
(ii) If the flow object is a receive activity, then a message is only awaited

7

References Passing

• References can be passed to other
participants

• This is done via an association between a
reference (set), a message flow and a flow
object

Extending BPMN for Modeling Complex Choreographies 5

P
a
rt
ic
ip
a
n
t

(a) Participant sets

Task

name

<ref>

Task

name

<ref>

(b) References

name

<ref>
names

<ref>

(c) Reference sets

!"#$

%&$'(

)
"
&*
+,
+-
"
!
*

."/0

!"#$

%&$'(

."/0

!"#$

%&$'(

."/0

!"#$

%&$'(!"#$/

%&$'(

(d) Reference passing

Fig. 2. BPMN extensions

can be potentially many participants involved. In our auctioning example, there
is exactly one seller and one auctioning service involved in one conversation.
However, we have potentially many bidders involved.

For representing multiple participants we introduce shadowed pools as new
notational element, shown in figure 2(a). A set of participants of the same type
involved in the same conversation is called a participant set.

3.2 References

The main challenge with participant sets is that we need to distinguish individual
participants out of this set. We do this via references as shown in figure 2(b).
A reference is a special data object enhanced with 〈ref〉. A reference can be
connected to a flow object via associations. We give the following semantics to
the different connection directions:

– A reference can be written by a flow object (represented by an association
from the flow object to the reference). (i) If the flow object is a receive
activity, e.g. an intermediate message event or an activity with incoming
message flow, the reference will point to the sender upon message receipt. If
the reference already pointed to a participant, the reference will simply be
overwritten. (ii) If the flow object is not a receive activity, it is not specified
what participant the reference will point to. Consider the selection of the
buyer in our example.

– A reference can be read by a flow object (represented by an association from
the reference to the flow object). (i) If the flow object is a send activity,
the message will be sent to the participant the reference points to. In our
example the auctioning service sends a completion notification to exactly
that bidder out of the bidder set, who was selected to have won the auction.
(ii) If the flow object is a receive activity, then a message is only awaited

8

Enhanced Auctioning Scenario

E
x
ten

d
in

g
B

P
M

N
for

M
o
d
elin

g
C

om
p
lex

C
h
oreograp

h
ies

7

Send sorry

message
Auction

begins

Auction

over

Send auction

creation req.

Send comple-

tion notif.

Send comple-

tion notif.

Send

payment

S
e
lle

r
A

u
c
ti
o
n
in

g
 S

e
rv

ic
e

B
id

d
e

r S
o
rr

y
 m

s
g

C
o
m

p
le

ti
o
n

n
o
ti
fi
c
a
ti
o
n

U
n
s
u
c
c
e
s
s
fu

l

c
o
m

p
l.
 n

o
ti
f.

P
a
y
m

e
n
t

A
u
c
ti
o
n

c
re

a
ti
o
n
 r

e
q
u
e
s
t

Send bid

Auction

over

Receive

 bid

bidders

<ref>

Any

bids?
Send unsucc.

completion

notif.

Select

buyer

buyer

<ref>

others

<ref>
seller

<ref>

P
ro

d
u
c
t

Send product

C
o
m

p
le

ti
o
n

n
o
ti
fi
c
a
ti
o
n

no

yes

bids

seller

<ref>

F
ig.3.

T
he

auctioning
scenario

represented
using

the
extended

B
P

M
N

9

ValidationExtending BPMN for Modeling Complex Choreographies 13

Pattern BPMN ext. BPMN

Send + +
Receive + +
Send/Receive + +
Racing Incoming Messages + +
One-to-many Send - +
One-from-many Receive - +
One-to-many Send/Receive - +
Multi-reponses + +
Contingent Request - +/-
Atomic Multicast Notification - -
Request with a Referral - +
Relayed Request - +

Table 1. BPMN vs. extended BPMN

Relayed Request: Process X makes a request to process Y which delegates the
request to other processes (Z1, . . . , Zn). Processes Z1, . . . , Zn then continue
interacting with process X while process Y observes a “view” of the interactions
including faults. The interacting parties are aware of this “view”. The Relayed
Request pattern is shown in figure 7(b). While participant Z has immediate
knowledge of Y, it needs a reference to participant X. This is received via refer-
ence passing from Y.

4.5 Validation Summary

A comparison on the supported Service Interaction Patterns for the standard
BPMN as well as our proposed extension is shown in table 4.5. As already
argued previously, we do not support Atomic Multicast Notification and did not
consider Dynamic Routing in this assessment. Contingent Requests is also only
partly supported, since (late) responses from earlier requests are ignored.

5 Discussion

Our proposals make heavy use of refined data objects. A major problem with
BPMN data objects is that their semantics is not clearly defined in the BPMN
specification. E.g. it is unclear what it means if different activities write on the
same data object. Here, we simply assume that if an activity has write-access
to a data object, it (might) overwrite the entire content of the data object upon
completion. BPMN does not have the notion of collections or buffers, as they
are present in UML Activity Diagrams [8]. Therefore, we introduced a distinc-
tion between simple data objects and data object sets, where we assume that
write-access to a data object set typically means that the activity (might) add
an object to the set. We do not require that data objects are only placed within
pools or only accessed from within one pool. However, we have to leave a detailed

10

Example: Single Transmission
Bilateral Interaction Patterns

11

8 Gero Decker and Frank Puhlmann

X A

Y

(a) Send
X

A

y
<ref>

Y

(b) Send to Reference

X A

Y

(c) Receive

X

A

Y

<ref>

Y

(d) Receive from Refer-
ence

X

A

y
<ref>

Y

(e) Receive Reference

X A

Y

B

(f) Send/Receive

X

A

y
<ref>

Y

B

(g) Send/Receive from/to Ref-
erence

Fig. 4. Single transmission bilateral interaction patterns

the references of the different bidders into a reference set. The reference set
is forwarded to the “select buyer” task. Inside this task, the successful bidder
is selected and placed into a new reference, denoted as buyer. The remaining
references of the bidders reference set are placed into an others reference set.
The others reference set is used as an input to the “send sorry message” task.
Here, an instance is created for each element of the set. Hence, all unsuccessful
bidders are notified. The buyer reference is forwarded to the “send completion
notification” task, where it determines the instance of the bidder that should be
contacted. Furthermore, it is passed to the seller, where it is used as an input for
the reception of the payment as well as determining the reference of the bidder’s
instance to which the product should be sent. Finally, a reference of the seller
is passed to the successful bidder. This reference is acquired implicitly via the
initial interaction between the seller and the auctioning service.

4 Validation

This section validates the proposed BPMN extensions by investigating how the
Service Interaction Patterns can be represented. It is notable that many of the
patterns require multiple participants and/or dynamic binding of interaction
partners via reference passing.

4.1 Single Transmission Bilateral Interaction Patterns

The single transmission bilateral interaction patterns represent basic interaction
behavior. Graphical representations are shown in figure 4.

Discussion

• Informal style of the extensions

• "Heavy use" of Data Objects

• Not clearly specified in BPMN

• Related to BPEL4Chor

• Limited set of supported reference passing scenarios

• Only minor extensions to BPMN

12

Conclusions

• We showed weaknesses of the BPMN
regarding choreography modeling

• We proposed participant sets, reference
(sets) and reference passing as extensions

• Using only these few extensions, 11 out of
12 service interaction patterns are
supported (instead of 5 out of 12)

13

Thank you!

14

Appendix I: Single Transmission
Multilateral Interaction Patterns

15

10 Gero Decker and Frank Puhlmann

!
"

#

(a) Racing incoming
messages

!

"

#
$%&'(

)

(b) One-to-many send

!

"

#

$%&'(

)

(c) One-from-many re-
ceive

X

y
<ref>

Y

A B

y’
<ref>

(d) One-to-many send/receive

Fig. 5. Single transmission multilateral interaction patterns

On-to-many send/receive: A process sends a request to several other processes,
which may all be identical or logical related. Responses are expected within a
given timeframe. However, some responses may not arrive within the timeframe
and some processes may even not respond at all. The One-to-many Send/receive
pattern is shown in figure 5(d). The associated reference set points to the par-
ticipants that should be included. Like in the preceding pattern, also in this
pattern the task B decides if enough responses have been gathered in the given
timeframe. The figure includes a reference y’ used within the sub-process. This
reference is to be filled for every instance that is spawned, as already mentioned
in section 3.2.

4.3 Multi Transmission Interaction Patterns

The multi transmission interaction patterns represent many to many interac-
tions. Graphical representations are shown in figure 6.

Multi-responses: A process X sends a request to another process Y. Subsequently,
X receives any number of responses from Y until no further responses are re-
quired. The trigger of no further responses can arise from a temporal condition
or message content, and can arise from either X or Y’s side. This pattern is
depicted in figure 6(a). The task D of X sends an initial request to task A of Y.
Task B of Y responds until they are no more responses. Task E in X receives

Appendix II: Multi Transmission
Interaction Patterns

16

Extending BPMN for Modeling Complex Choreographies 11
!

" # $ %

& '

(a) Multi-responses
!

"

#$%$&'(

)$*'(+$,-
.

/0

1+$,2

/

1+$,2

3

(b) Contingent requests

Fig. 6. Multi transmission interaction patterns

the responses until (1) a timeout occurs, (2) E decides to have gathered enough
responses, or (3) a stop messages arrives from Y.

Contingent Requests: A process X makes a request to another party Y. If X does
not receive a response within a certain timeframe, X alternatively sends a request
to another process Z, and so on. This pattern is shown in figure 6(b). Initially, a
reference set is passed to a task that selects a certain reference out of the set. The
downstream task A receives this reference and initiates a request. Task B tries to
receive the response. If no response is received in the given timeframe, another
reference out of the reference set is selected and processed as described. What
cannot be captured with our extensions, however, is the reception of messages
from previous requests that failed due to a timeout.

Atomic Multicast Notification: A process sends notifications to several parties
such that a certain number of parties are required to accept the notification within
a certain timeframe. This pattern requires transactional behavior spanning mul-
tiple processes. Transactions are included in BPMN, however, they must only be
applied within one process. Distributed transactions are not supported. There-
fore, we can only provide a workaround for this pattern in our extended BPMN.
It looks similar to One-to-many Send/receive with a completion condition at the
notifying side.

4.4 Routing Patterns

The routing patterns describe flexible interaction behavior between a set of pro-
cesses. Graphical representations are shown in figure 7.

Request with Referral: Process X sends a request to process Y indicating that
any follow-up response should be sent to a number of other processes (Z1, Z2,
. . . , Zn) depending on the evaluation of certain conditions. The solution to this
pattern is shown in figure 7(a). It uses reference passing to denote the instances
of Z that should receive the follow-up responses.

Appendix III: Routing Patterns
17

12 Gero Decker and Frank Puhlmann

!

"# $

%&'()

* +

,

-
-

%&'()

(a) Request with Referral

!
"

$

% &

'

(

)*

+

,-./0

(b) Relayed Request

Fig. 7. Routing patterns

Pattern BPMN ext. BPMN

Send + +
Receive + +
Send/Receive + +
Racing Incoming Messages + +
One-to-many Send - +
One-from-many Receive - +
One-to-many Send/Receive - +
Multi-reponses + +
Contingent Request - +/-
Atomic Multicast Notification - -
Request with a Referral - +
Relayed Request - +

Table 1. BPMN vs. extended BPMN

Relayed Request: Process X makes a request to process Y which delegates the
request to other processes (Z1, . . . , Zn). Processes Z1, . . . , Zn then continue
interacting with process X while process Y observes a “view” of the interactions
including faults. The interacting parties are aware of this “view”. The Relayed
Request pattern is shown in figure 7(b). While participant Z has immediate
knowledge of Y, it needs a reference to participant X. This is received via refer-
ence passing from Y.

4.5 Validation Summary

A comparison on the supported Service Interaction Patterns for the standard
BPMN as well as our proposed extension is shown in table 4.5. As already
argued previously, we do not support Atomic Multicast Notification and did not
consider Dynamic Routing in this assessment. Contingent Requests is also only
partly supported, since (late) responses from earlier requests are ignored.

